Institut d'Informàtica i Aplicacions, Universitat de Girona, 17003 Girona, Spain.
Campus Guarapuava, Federal University of Technology-Paraná (UTFPR), Guarapuava 85053-525, Brazil.
Sensors (Basel). 2022 Feb 21;22(4):1665. doi: 10.3390/s22041665.
Nocturnal hypoglycemia (NH) is one of the most challenging events for multiple dose insulin therapy (MDI) in people with type 1 diabetes (T1D). The goal of this study is to design a method to reduce the incidence of NH in people with T1D under MDI therapy, providing a decision-support system and improving confidence toward self-management of the disease considering the dataset used by Bertachi et al. Different machine learning (ML) algorithms, data sources, optimization metrics and mitigation measures to predict and avoid NH events have been studied. In addition, we have designed population and personalized models and studied the generalizability of the models and the influence of physical activity (PA) on them. Obtaining 30 g of rescue carbohydrates (CHO) is the optimal value for preventing NH, so it can be asserted that this is the value with which the time under 70 mg/dL decreases the most, with almost a 35% reduction, while increasing the time in the target range by 1.3%. This study supports the feasibility of using ML techniques to address the prediction of NH in patients with T1D under MDI therapy, using continuous glucose monitoring (CGM) and a PA tracker. The results obtained prove that BG predictions can not only be critical in achieving safer diabetes management, but also assist physicians and patients to make better and safer decisions regarding insulin therapy and their day-to-day lives.
夜间低血糖 (NH) 是 1 型糖尿病 (T1D) 患者接受多次胰岛素注射治疗 (MDI) 时最具挑战性的事件之一。本研究旨在设计一种方法,以降低 MDI 治疗下 T1D 患者的 NH 发生率,为患者提供决策支持系统并增强他们对疾病自我管理的信心,同时考虑 Bertachi 等人使用的数据集。已经研究了不同的机器学习 (ML) 算法、数据源、优化指标和缓解措施,以预测和避免 NH 事件。此外,我们设计了群体和个性化模型,并研究了模型的泛化能力以及体力活动 (PA) 对它们的影响。摄入 30 克救援碳水化合物 (CHO) 是预防 NH 的最佳值,因此可以断言,这是使血糖低于 70mg/dL 的时间减少最多的数值,几乎减少了 35%,同时使目标范围内的时间增加了 1.3%。本研究支持使用 ML 技术来解决 MDI 治疗下的 T1D 患者 NH 预测问题,同时使用连续血糖监测 (CGM) 和 PA 追踪器。所得结果证明,BG 预测不仅对实现更安全的糖尿病管理至关重要,而且还可以帮助医生和患者就胰岛素治疗和日常生活做出更好、更安全的决策。