Suppr超能文献

利用计划 CT 的放射组学预测脊柱 SBRT 前的椎体压缩性骨折。

Predicting vertebral compression fracture prior to spinal SBRT using radiomics from planning CT.

机构信息

Department of Biomedicine and Health Sciences, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea.

Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Korea.

出版信息

Eur Spine J. 2024 Aug;33(8):3221-3229. doi: 10.1007/s00586-023-07963-3. Epub 2023 Oct 9.

Abstract

PURPOSE

The purpose of the study was to develop a predictive model for vertebral compression fracture (VCF) prior to spinal stereotactic body radiation therapy (SBRT) using radiomics features extracted from pre-treatment planning CT images.

METHODS

A retrospective analysis was conducted on 85 patients (114 spinal lesions) who underwent spinal SBRT. Radiomics features were extracted from pre-treatment planning CT images and used to develop a predictive model using a classification algorithm selected from nine different machine learning algorithms. Four different models were trained, including clinical features only, clinical and radiomics features, radiomics and dosimetric features, and all features. Model performance was evaluated using accuracy, precision, recall, F1-score, and area under the curve (AUC).

RESULTS

The model that used all features (radiomics, clinical, and dosimetric) showed the highest performance with an AUC of 0.871. The radiomics and dosimetric features model had the superior performance in terms of accuracy, precision, recall, and F1-score.

CONCLUSION

The developed predictive model based on radiomics features extracted from pre-treatment planning CT images can accurately predict the likelihood of VCF prior to spinal SBRT. This model has significant implications for treatment planning and preventive measures for patients undergoing spinal SBRT. Future research can focus on improving model performance by incorporating new data and external validation using independent data sets.

摘要

目的

本研究旨在使用预处理计划 CT 图像提取的放射组学特征,为脊柱立体定向体放射治疗(SBRT)前的椎体压缩性骨折(VCF)开发预测模型。

方法

回顾性分析了 85 例(114 个脊柱病变)接受脊柱 SBRT 的患者。从预处理计划 CT 图像中提取放射组学特征,并使用从 9 种不同机器学习算法中选择的分类算法来开发预测模型。共训练了 4 种不同的模型,包括仅临床特征、临床和放射组学特征、放射组学和剂量学特征以及所有特征。使用准确性、精确性、召回率、F1 评分和曲线下面积(AUC)评估模型性能。

结果

使用所有特征(放射组学、临床和剂量学)的模型表现最佳,AUC 为 0.871。放射组学和剂量学特征模型在准确性、精确性、召回率和 F1 评分方面表现更佳。

结论

基于预处理计划 CT 图像提取的放射组学特征开发的预测模型可准确预测脊柱 SBRT 前 VCF 的可能性。该模型对接受脊柱 SBRT 的患者的治疗计划和预防措施具有重要意义。未来的研究可以通过纳入新数据和使用独立数据集进行外部验证来提高模型性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验