Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China.
NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
Cell Oncol (Dordr). 2024 Apr;47(2):555-571. doi: 10.1007/s13402-023-00883-w. Epub 2023 Oct 9.
This study aims to identify key genes regulating tumor infiltrating plasma cells (PC) and provide new insights for innovative immunotherapy.
Key genes related to PC were identified using machine learning in lung adenocarcinoma (LUAD) patients. A prognostic model called PC scores was developed using TCGA data and validated with GEO cohorts. We assessed the molecular background, immune features, and drug sensitivity of the high PC scores group. Real-time PCR was utilized to assess the expression of hub genes in both localized LUAD patients and LUAD cell lines.
We constructed PC scores based on seventeen PC-related hub genes (ELOVL6, MFI2, FURIN, DOK1, ERO1LB, CLEC7A, ZNF431, KIAA1324, NUCB2, TXNDC11, ICAM3, CR2, CLIC6, CARNS1, P2RY13, KLF15, and SLC24A4). Higher age, TNM stage, and PC scores independently predicted shorter overall survival. The AUC value of PC scores for one year, three years, and five years of overall survival were 0.713, 0.716, and 0.690, separately. The nomogram model that integrated age, stage, and PC scores showed significantly higher predictive value than stage alone (P < 0.01). High PC scores group exhibited an immune suppressing microenvironment with lower B, CD8 + T, CD4 + T, and dendritic cell infiltration. Docetaxel, gefitinib, and erlotinib had lower IC50 in high PC groups (P < 0.001). After validation through the local cohort and in vitro experiments, we ultimately confirmed three key potential targets: MFI2, KLF15, and CLEC7A.
We proposed a prediction mode which can effectively identify high-risk LUAD patients and found three novel genes closely correlated with PC tumor infiltration.
本研究旨在鉴定调控肿瘤浸润浆细胞(PC)的关键基因,为创新性免疫治疗提供新视角。
利用机器学习在肺腺癌(LUAD)患者中鉴定与 PC 相关的关键基因。使用 TCGA 数据建立称为 PC 评分的预后模型,并通过 GEO 队列进行验证。我们评估了高 PC 评分组的分子背景、免疫特征和药物敏感性。实时 PCR 用于评估局部 LUAD 患者和 LUAD 细胞系中关键基因的表达。
我们构建了基于十七个与 PC 相关的关键基因(ELOVL6、MFI2、FURIN、DOK1、ERO1LB、CLEC7A、ZNF431、KIAA1324、NUCB2、TXNDC11、ICAM3、CR2、CLIC6、CARNS1、P2RY13、KLF15 和 SLC24A4)的 PC 评分。较高的年龄、TNM 分期和 PC 评分独立预测总体生存率较短。PC 评分预测一年、三年和五年总体生存率的 AUC 值分别为 0.713、0.716 和 0.690。整合年龄、分期和 PC 评分的列线图模型显示出比分期模型更高的预测价值(P < 0.01)。高 PC 评分组表现出免疫抑制的微环境,B、CD8+T、CD4+T 和树突状细胞浸润较低。多西他赛、吉非替尼和厄洛替尼在高 PC 组中的 IC50 较低(P < 0.001)。通过本地队列和体外实验验证后,我们最终确认了三个潜在的关键靶点:MFI2、KLF15 和 CLEC7A。
我们提出了一种能够有效识别高危 LUAD 患者的预测模式,并发现了三个与 PC 肿瘤浸润密切相关的新基因。