IEEE Trans Neural Syst Rehabil Eng. 2023;31:3958-3967. doi: 10.1109/TNSRE.2023.3323509. Epub 2023 Oct 13.
The limited number of brain-computer interface based on motor imagery (MI-BCI) instruction sets for different movements of single limbs makes it difficult to meet practical application requirements. Therefore, designing a single-limb, multi-category motor imagery (MI) paradigm and effectively decoding it is one of the important research directions in the future development of MI-BCI. Furthermore, one of the major challenges in MI-BCI is the difficulty of classifying brain activity across different individuals. In this article, the transfer data learning network (TDLNet) is proposed to achieve the cross-subject intention recognition for multiclass upper limb motor imagery. In TDLNet, the Transfer Data Module (TDM) is used to process cross-subject electroencephalogram (EEG) signals in groups and then fuse cross-subject channel features through two one-dimensional convolutions. The Residual Attention Mechanism Module (RAMM) assigns weights to each EEG signal channel and dynamically focuses on the EEG signal channels most relevant to a specific task. Additionally, a feature visualization algorithm based on occlusion signal frequency is proposed to qualitatively analyze the proposed TDLNet. The experimental results show that TDLNet achieves the best classification results on two datasets compared to CNN-based reference methods and transfer learning method. In the 6-class scenario, TDLNet obtained an accuracy of 65%±0.05 on the UML6 dataset and 63%±0.06 on the GRAZ dataset. The visualization results demonstrate that the proposed framework can produce distinct classifier patterns for multiple categories of upper limb motor imagery through signals of different frequencies. The ULM6 dataset is available at https://dx.doi.org/10.21227/8qw6-f578.
基于运动想象(MI)的脑机接口(BCI)指令集数量有限,无法满足不同单肢运动的实际应用需求。因此,设计一种单肢、多类运动想象(MI)范式并对其进行有效解码是未来 MI-BCI 发展的重要研究方向之一。此外,MI-BCI 的主要挑战之一是难以对不同个体的大脑活动进行分类。本文提出了转移数据学习网络(TDLNet),以实现多类别上肢运动想象的跨个体意图识别。在 TDLNet 中,使用转移数据模块(TDM)对跨个体脑电图(EEG)信号进行分组处理,然后通过两个一维卷积融合跨个体通道特征。残差注意力机制模块(RAMM)为每个 EEG 信号通道分配权重,并动态关注与特定任务最相关的 EEG 信号通道。此外,还提出了一种基于遮挡信号频率的特征可视化算法,对所提出的 TDLNet 进行定性分析。实验结果表明,与基于 CNN 的参考方法和迁移学习方法相比,TDLNet 在两个数据集上都取得了最佳的分类结果。在 6 类情况下,TDLNet 在 UML6 数据集上的准确率为 65%±0.05,在 GRAZ 数据集上的准确率为 63%±0.06。可视化结果表明,所提出的框架可以通过不同频率的信号为多个类别上肢运动想象产生明显的分类模式。UML6 数据集可在 https://dx.doi.org/10.21227/8qw6-f578 获得。