Suppr超能文献

用于生理信号检测和机器学习辅助心血管疾病诊断的压电生物传感器的最新进展。

Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis.

作者信息

Huang Shunyao, Gao Yujia, Hu Yian, Shen Fengyi, Jin Zhangsiyuan, Cho Yuljae

机构信息

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China

出版信息

RSC Adv. 2023 Oct 2;13(42):29174-29194. doi: 10.1039/d3ra05932d. eCollection 2023 Oct 4.

Abstract

As cardiovascular disease stands as a global primary cause of mortality, there has been an urgent need for continuous and real-time heart monitoring to effectively identify irregular heart rhythms and to offer timely patient alerts. However, conventional cardiac monitoring systems encounter challenges due to inflexible interfaces and discomfort during prolonged monitoring. In this review article, we address these issues by emphasizing the recent development of the flexible, wearable, and comfortable piezoelectric passive sensor assisted by machine learning technology for diagnosis. This innovative device not only harmonizes with the dynamic mechanical properties of human skin but also facilitates continuous and real-time collection of physiological signals. Addressing identified challenges and constraints, this review provides insights into recent advances in piezoelectric cardiac sensors, from devices to circuit systems. Furthermore, this review delves into the integration of machine learning technologies, showcasing their pivotal role in facilitating continuous and real-time assessment of cardiac status. The synergistic combination of flexible piezoelectric sensor design and machine learning holds substantial potential in automating the detection of cardiac irregularities with minimal human intervention. This transformative approach has the power to revolutionize patient care paradigms.

摘要

由于心血管疾病是全球主要的死亡原因,因此迫切需要进行持续的实时心脏监测,以有效识别心律失常并及时向患者发出警报。然而,传统的心脏监测系统由于接口不灵活以及长时间监测时的不适感而面临挑战。在这篇综述文章中,我们通过强调借助机器学习技术进行诊断的柔性、可穿戴且舒适的压电无源传感器的最新进展来解决这些问题。这种创新设备不仅与人体皮肤的动态机械特性相协调,还便于连续实时采集生理信号。针对已识别的挑战和限制,本综述提供了从设备到电路系统的压电心脏传感器最新进展的见解。此外,本综述深入探讨了机器学习技术的整合,展示了它们在促进心脏状态的连续实时评估中的关键作用。柔性压电传感器设计与机器学习的协同结合在以最少的人工干预自动检测心脏异常方面具有巨大潜力。这种变革性方法有能力彻底改变患者护理模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4741/10561672/45f9a20f3d92/d3ra05932d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验