Xu Minxing, Shin Dongil, Sberna Paolo M, van der Kolk Roald, Cupertino Andrea, Bessa Miguel A, Norte Richard A
Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, CD, 2628, The Netherlands.
Department of Quantum Nanoscience, Delft University of Technology, Kavli Institute of Nanoscience, Delft, CD, 2628, The Netherlands.
Adv Mater. 2024 Feb;36(5):e2306513. doi: 10.1002/adma.202306513. Epub 2023 Dec 3.
For decades, mechanical resonators with high sensitivity have been realized using thin-film materials under high tensile loads. Although there are remarkable strides in achieving low-dissipation mechanical sensors by utilizing high tensile stress, the performance of even the best strategy is limited by the tensile fracture strength of the resonator materials. In this study, a wafer-scale amorphous thin film is uncovered, which has the highest ultimate tensile strength ever measured for a nanostructured amorphous material. This silicon carbide (SiC) material exhibits an ultimate tensile strength of over 10 GPa, reaching the regime reserved for strong crystalline materials and approaching levels experimentally shown in graphene nanoribbons. Amorphous SiC strings with high aspect ratios are fabricated, with mechanical modes exceeding quality factors 10 at room temperature, the highest value achieves among SiC resonators. These performances are demonstrated faithfully after characterizing the mechanical properties of the thin film using the resonance behaviors of free-standing resonators. This robust thin-film material has significant potential for applications in nanomechanical sensors, solar cells, biological applications, space exploration, and other areas requiring strength and stability in dynamic environments. The findings of this study open up new possibilities for the use of amorphous thin-film materials in high-performance applications.
几十年来,通过在高拉伸载荷下使用薄膜材料实现了具有高灵敏度的机械谐振器。尽管利用高拉伸应力在实现低耗散机械传感器方面取得了显著进展,但即使是最佳策略的性能也受到谐振器材料拉伸断裂强度的限制。在本研究中,发现了一种晶圆级非晶薄膜,它具有纳米结构非晶材料有史以来测量到的最高极限拉伸强度。这种碳化硅(SiC)材料的极限拉伸强度超过10 GPa,达到了强晶体材料的水平,并接近石墨烯纳米带实验显示的水平。制造出了具有高纵横比的非晶SiC弦,其机械模式在室温下的品质因数超过10,这是SiC谐振器中实现的最高值。利用独立谐振器的共振行为对薄膜的力学性能进行表征后,忠实地展示了这些性能。这种坚固的薄膜材料在纳米机械传感器、太阳能电池、生物应用、太空探索以及其他在动态环境中需要强度和稳定性的领域具有巨大的应用潜力。本研究的结果为在高性能应用中使用非晶薄膜材料开辟了新的可能性。