Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Nano Lett. 2017 Apr 12;17(4):2467-2472. doi: 10.1021/acs.nanolett.7b00159. Epub 2017 Mar 8.
A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.
一段用于三磷酸腺苷 (ATP) 的分裂适体通过延伸和修饰选定的订书钉链被嵌入到纳米机械 DNA 折纸结构的两个杠杆中,成为一个识别单元。分裂适体茎中的一个附加光学模块由两个不同的菁染料组成,如果两个 ATP 分子作为靶分子结合到识别模块上,它们会经历从绿色(供体)到红色(受体)发射的能量转移,从而使染料接近。结果,ATP 作为靶触发了 DNA 折纸形状的转变,并产生了从绿色到红色的荧光颜色变化作为读出。传统的原子力显微镜 (AFM) 图像证实了 DNA 折纸在没有 ATP 的情况下从开放形式到存在靶分子时的闭合形式的拓扑变化。在不存在和存在靶分子的情况下获得的闭合/打开比与荧光颜色比很好地吻合,从而验证了双色荧光读出。分裂适体作为距离 DNA 折纸支点最远的功能单元的正确定位对于荧光读出的适体传感至关重要。荧光颜色变化允许实时在溶液中跟踪 DNA 折纸适体传感器的拓扑变化。荧光能量转移的概念用于溶液中分裂适体的双色读出,以及表面上的 AFM,成功地结合在单个 DNA 折纸结构中,以获得双模态读出。这些结果对于未来用于化学-生物学和生物分析目的的定制 DNA 设备非常重要,因为它们不仅作为简单的适体起作用,而且还可以在单分子水平上通过 AFM 看到。