Suppr超能文献

基于YOLOv5的ML-AFP的拥挤道路场景多目标检测

Multi-object detection for crowded road scene based on ML-AFP of YOLOv5.

作者信息

Li Yiming, Wu Kaiwen, Kang Wenshuo, Zhou Yuhui, Di Fan

机构信息

College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.

Hunan University, Changsha, 410082, China.

出版信息

Sci Rep. 2023 Oct 12;13(1):17310. doi: 10.1038/s41598-023-43458-3.

Abstract

Aiming at the problem of multi-object detection such as target occlusion and tiny targets in road scenes, this paper proposes an improved YOLOv5 multi-object detection model based on ML-AFP (multi-level aggregation feature perception) mechanism. Since tiny targets such as non-motor vehicle and pedestrians are not easily detected, this paper adds a micro target detection layer and a double head mechanism to improve the detection ability of tiny targets. Varifocal loss is used to achieve a more accurate ranking in the process of non-maximum suppression to solve the problem of target occlusion, and this paper also proposes a ML-AFP mechanism. The adaptive fusion of spatial feature information at different scales improves the expression ability of network model features, and improves the detection accuracy of the model as a whole. Our experimental results on multiple challenging datasets such as KITTI, BDD100K, and show that the accuracy, recall rate and mAP value of the proposed model are greatly improved, which solves the problem of multi-object detection in crowded road scenes.

摘要

针对道路场景中目标遮挡、小目标等多目标检测问题,提出一种基于ML-AFP(多级聚合特征感知)机制的改进YOLOv5多目标检测模型。由于非机动车和行人等小目标不易被检测到,本文增加了微目标检测层和双头机制以提高小目标的检测能力。使用变焦距损失在非极大值抑制过程中实现更准确的排序,以解决目标遮挡问题,本文还提出了ML-AFP机制。不同尺度空间特征信息的自适应融合提高了网络模型特征的表达能力,提升了模型整体的检测精度。在KITTI、BDD100K等多个具有挑战性的数据集上的实验结果表明,所提模型的准确率、召回率和mAP值都有大幅提高,解决了拥挤道路场景下的多目标检测问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cce/10570361/5039d729fc73/41598_2023_43458_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验