Borrelli James, Creath Robert A, Rogers Mark W
Biomedical Engineering, Stevenson University.
Department of Exercise Science, Lebanon Valley College.
MethodsX. 2023 Sep 26;11:102399. doi: 10.1016/j.mex.2023.102399. eCollection 2023 Dec.
Assessment of protective arm reactions associated with forward falls are typically performed by dropping research participants from a height onto a landing surface. The impact velocity is generally modulated by controlling the total height of the fall. This contrasts with an actual fall where the fall velocity is dependent on several factors in addition to fall height and not likely predictable at the onset of the fall. A counterweight and pulley system can be used to modulate the fall velocity in simulated forward falls in a manner that is not predictable to study participants, enhancing experimental validity. However, predicting the fall velocity based on participant height and weight and counterweight mass is not straightforward. In this article, the design of the FALL simulator For Injury prevention Training and assessment (FALL FIT) system is described. A dynamic model of the FALL FIT and counterweight system is developed and model parameters are fit using nonlinear optimization and experimental data. The fitted model enables prediction of fall velocity as a function of participant height and weight and counterweight load. The method can be used to provide controllable perturbations thereby elucidating the control strategy used when protecting the body from injury in a forward fall, how the control strategy changes because of aging or dysfunction or as a method for progressive protective arm reaction training.•Construction of device to simulate forward falls with controllable impact velocity using material that are commercially available is described•A dynamic model of the FALL FIT is developed to estimate the impact velocity of a simulated forward fall using participant height and counterweight load•The dynamic model is validated using data from 3 previous studies.
与向前跌倒相关的保护性手臂反应评估通常是通过将研究参与者从一定高度下落到着陆表面来进行的。撞击速度通常通过控制下落的总高度来调节。这与实际跌倒形成对比,在实际跌倒中,跌倒速度除了取决于跌倒高度外,还取决于几个因素,并且在跌倒开始时不太可能预测。可以使用配重和滑轮系统以研究参与者无法预测的方式调节模拟向前跌倒中的跌倒速度,从而提高实验有效性。然而,根据参与者的身高、体重和配重质量来预测跌倒速度并非易事。在本文中,描述了用于预防伤害训练和评估的跌倒模拟器(FALL FIT)系统的设计。开发了FALL FIT和配重系统的动态模型,并使用非线性优化和实验数据对模型参数进行拟合。拟合后的模型能够根据参与者的身高、体重和配重负荷预测跌倒速度。该方法可用于提供可控的扰动,从而阐明在向前跌倒时保护身体免受伤害所使用的控制策略、控制策略因衰老或功能障碍而如何变化,或者作为渐进性保护性手臂反应训练的一种方法。•描述了使用市售材料构建具有可控撞击速度的模拟向前跌倒装置的过程•开发了FALL FIT的动态模型,以使用参与者身高和配重负荷来估计模拟向前跌倒的撞击速度•使用之前3项研究的数据对动态模型进行了验证。