Chatzimichail Theodora, Hatjimihail Aristides T
Hellenic Complex Systems Laboratory, Kostis Palamas 21, 66131 Drama, Greece.
Diagnostics (Basel). 2023 Oct 5;13(19):3135. doi: 10.3390/diagnostics13193135.
Medical diagnosis is the basis for treatment and management decisions in healthcare. Conventional methods for medical diagnosis commonly use established clinical criteria and fixed numerical thresholds. The limitations of such an approach may result in a failure to capture the intricate relations between diagnostic tests and the varying prevalence of diseases. To explore this further, we have developed a freely available specialized computational tool that employs Bayesian inference to calculate the posterior probability of disease diagnosis. This novel software comprises of three distinct modules, each designed to allow users to define and compare parametric and nonparametric distributions effectively. The tool is equipped to analyze datasets generated from two separate diagnostic tests, each performed on both diseased and nondiseased populations. We demonstrate the utility of this software by analyzing fasting plasma glucose, and glycated hemoglobin A1c data from the National Health and Nutrition Examination Survey. Our results are validated using the oral glucose tolerance test as a reference standard, and we explore both parametric and nonparametric distribution models for the Bayesian diagnosis of diabetes mellitus.
医学诊断是医疗保健中治疗和管理决策的基础。传统的医学诊断方法通常使用既定的临床标准和固定的数值阈值。这种方法的局限性可能导致无法捕捉诊断测试与疾病不同患病率之间的复杂关系。为了进一步探索这一点,我们开发了一种免费的专业计算工具,该工具采用贝叶斯推理来计算疾病诊断的后验概率。这个新颖的软件由三个不同的模块组成,每个模块都旨在让用户有效地定义和比较参数分布和非参数分布。该工具能够分析来自两项独立诊断测试生成的数据集,每项测试都在患病和未患病群体上进行。我们通过分析来自国家健康与营养检查调查的空腹血糖和糖化血红蛋白A1c数据来证明该软件的实用性。我们的结果使用口服葡萄糖耐量试验作为参考标准进行验证,并且我们探索了用于糖尿病贝叶斯诊断的参数分布和非参数分布模型。