Ibrahim Kiagus Aufa, Sejati Prima Asmara, Darma Panji Nursetia, Nakane Akira, Takei Masahiro
Department of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan.
Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
Sensors (Basel). 2023 Sep 24;23(19):8062. doi: 10.3390/s23198062.
The minor copper (Cu) particles among major aluminum (Al) particles have been detected by means of an integration of a generative adversarial network and electrical impedance tomography (GAN-EIT) for a wet-type gravity vibration separator (WGS). This study solves the problem of blurred EIT reconstructed images by proposing a GAN-EIT integration system for Cu detection in WGS. GAN-EIT produces two types of images of various Cu positions among major Al particles, which are (1) the photo-based GAN-EIT images, where blurred EIT reconstructed images are enhanced by GAN based on a full set of photo images, and (2) the simulation-based GAN-EIT images. The proposed metal particle detection by GAN-EIT is applied in experiments under static conditions to investigate the performance of the metal detection method under single-layer conditions with the variation of the position of Cu particles. As a quantitative result, the images of detected Cu by GAN-EIT ψ̿GAN in different positions have higher accuracy as compared to σ*EIT. In the region of interest (ROI) covered by the developed linear sensor, GAN-EIT successfully reduces the Cu detection error of conventional EIT by 40% while maintaining a minimum signal-to-noise ratio (SNR) of 60 [dB]. In conclusion, GAN-EIT is capable of improving the detailed features of the reconstructed images to visualize the detected Cu effectively.
通过将生成对抗网络与电阻抗断层成像(GAN-EIT)相结合,已检测到湿式重力振动分离器(WGS)中主要铝(Al)颗粒中的微量铜(Cu)颗粒。本研究通过提出一种用于WGS中铜检测的GAN-EIT集成系统,解决了电阻抗断层成像重建图像模糊的问题。GAN-EIT生成了主要铝颗粒中各种铜位置的两种类型图像,即(1)基于照片的GAN-EIT图像,其中模糊的电阻抗断层成像重建图像通过基于全套照片图像的GAN进行增强,以及(2)基于模拟的GAN-EIT图像。所提出的通过GAN-EIT进行金属颗粒检测应用于静态条件下的实验,以研究在单层条件下随着铜颗粒位置变化的金属检测方法的性能。作为定量结果,与σ*EIT相比,GAN-EIT在不同位置检测到的铜的图像具有更高的准确性。在所开发的线性传感器覆盖的感兴趣区域(ROI)中,GAN-EIT成功地将传统电阻抗断层成像的铜检测误差降低了40%,同时保持了60 [dB]的最小信噪比(SNR)。总之,GAN-EIT能够改善重建图像的细节特征,以有效地可视化检测到的铜。