Suppr超能文献

基于生成对抗网络与电阻抗断层成像集成技术(GAN-EIT)的湿式重力振动分离器金属颗粒检测

Metal Particle Detection by Integration of a Generative Adversarial Network and Electrical Impedance Tomography (GAN-EIT) for a Wet-Type Gravity Vibration Separator.

作者信息

Ibrahim Kiagus Aufa, Sejati Prima Asmara, Darma Panji Nursetia, Nakane Akira, Takei Masahiro

机构信息

Department of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan.

Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.

出版信息

Sensors (Basel). 2023 Sep 24;23(19):8062. doi: 10.3390/s23198062.

Abstract

The minor copper (Cu) particles among major aluminum (Al) particles have been detected by means of an integration of a generative adversarial network and electrical impedance tomography (GAN-EIT) for a wet-type gravity vibration separator (WGS). This study solves the problem of blurred EIT reconstructed images by proposing a GAN-EIT integration system for Cu detection in WGS. GAN-EIT produces two types of images of various Cu positions among major Al particles, which are (1) the photo-based GAN-EIT images, where blurred EIT reconstructed images are enhanced by GAN based on a full set of photo images, and (2) the simulation-based GAN-EIT images. The proposed metal particle detection by GAN-EIT is applied in experiments under static conditions to investigate the performance of the metal detection method under single-layer conditions with the variation of the position of Cu particles. As a quantitative result, the images of detected Cu by GAN-EIT ψ̿GAN in different positions have higher accuracy as compared to σ*EIT. In the region of interest (ROI) covered by the developed linear sensor, GAN-EIT successfully reduces the Cu detection error of conventional EIT by 40% while maintaining a minimum signal-to-noise ratio (SNR) of 60 [dB]. In conclusion, GAN-EIT is capable of improving the detailed features of the reconstructed images to visualize the detected Cu effectively.

摘要

通过将生成对抗网络与电阻抗断层成像(GAN-EIT)相结合,已检测到湿式重力振动分离器(WGS)中主要铝(Al)颗粒中的微量铜(Cu)颗粒。本研究通过提出一种用于WGS中铜检测的GAN-EIT集成系统,解决了电阻抗断层成像重建图像模糊的问题。GAN-EIT生成了主要铝颗粒中各种铜位置的两种类型图像,即(1)基于照片的GAN-EIT图像,其中模糊的电阻抗断层成像重建图像通过基于全套照片图像的GAN进行增强,以及(2)基于模拟的GAN-EIT图像。所提出的通过GAN-EIT进行金属颗粒检测应用于静态条件下的实验,以研究在单层条件下随着铜颗粒位置变化的金属检测方法的性能。作为定量结果,与σ*EIT相比,GAN-EIT在不同位置检测到的铜的图像具有更高的准确性。在所开发的线性传感器覆盖的感兴趣区域(ROI)中,GAN-EIT成功地将传统电阻抗断层成像的铜检测误差降低了40%,同时保持了60 [dB]的最小信噪比(SNR)。总之,GAN-EIT能够改善重建图像的细节特征,以有效地可视化检测到的铜。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9ac/10574861/f23fdbf47941/sensors-23-08062-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验