Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506.
Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
eNeuro. 2023 Aug 9;10(8). doi: 10.1523/ENEURO.0204-23.2023. Print 2023 Aug.
Inhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used GFP-expressing and recombinase-expressing mouse lines to characterize genetically defined subtypes of SOM interneurons by morphologic, electrophysiological, and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electric transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of specific mouse driver lines. To address these issues, we crossed Flp and Cre driver lines with a dual-color intersectional reporter, allowing experimental access to several combinatorially defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye labeled from the pial surface to identify layer 1-projecting neurons and immunostained against several marker proteins, revealing correlations between genetic label, axonal target, and marker protein expression in the same neurons. Lastly, using whole-cell recordings , we analyzed and compared electrophysiological properties between different intersectional subsets. We identified two layer 1-targeting subtypes with nonoverlapping marker protein expression and electrophysiological properties, which, together with a previously characterized layer 4-targeting subtype, account for >50% of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior.
抑制性中间神经元在哺乳动物大脑皮层的正常发育和功能中起着至关重要的作用。在不同的抑制性亚类中,树突靶向、含有生长抑素 (SOM) 的中间神经元可能是最多样化的。早期的研究使用 GFP 表达和重组酶表达的小鼠系,通过形态、电生理和神经化学特性来描述基因定义的 SOM 中间神经元亚型。最近,大规模的研究将 SOM 中间神经元分为 13 种形态电转录组学 (MET) 类型。然而,目前尚不清楚这些不同的分类方案之间如何相互关联,并且由于缺乏特定的小鼠驱动线,对 MET 类型的实验访问受到限制。为了解决这些问题,我们将 Flp 和 Cre 驱动线与双颜色交叉报告基因系进行了杂交,从而可以实验性地访问几种组合定义的 SOM 亚群。来自成年雌雄小鼠的大脑从软脑膜表面逆行染色标记以鉴定投射到第 1 层的神经元,并针对几种标记蛋白进行免疫染色,揭示了遗传标记、轴突靶标和相同神经元中标记蛋白表达之间的相关性。最后,使用全细胞膜片钳记录技术,我们分析和比较了不同交叉亚群之间的电生理特性。我们鉴定了两种具有不重叠标记蛋白表达和电生理特性的第 1 层靶向亚型,这两种亚型加上以前表征的第 4 层靶向亚型,占所有第 5 层 SOM 细胞的 >50%和所有 SOM 细胞的 >40%,并且似乎映射到 13 个 MET 类型中的 5 个。对这些亚型的遗传访问将使研究人员能够确定它们的突触输入和输出,并揭示它们在皮层计算和动物行为中的作用。