University of Toronto, Toronto, Canada; McMaster University, Hamilton, Canada.
Rhazes Lab, Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA.
Comput Biol Med. 2023 Nov;166:107530. doi: 10.1016/j.compbiomed.2023.107530. Epub 2023 Oct 12.
One of the goals of AI-based computational pathology is to generate compact representations of whole slide images (WSIs) that capture the essential information needed for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision-support tools in hematology. In this study, we leverage our previously published end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSIs, which enables the direct use of individual cells as inputs rather than WSI patches. We then construct bags of individual cell features from each WSI, and apply multiple instance learning to extract their vector representations. To evaluate the quality of our representations, we conducted WSI retrieval and classification tasks. Our results show that we achieved a mAP@10 of 0.58 ±0.02 in WSI-level image retrieval, surpassing the random-retrieval baseline of 0.39 ±0.1. Furthermore, we predicted five diagnostic labels for individual aspirate WSIs with a weighted-average F1 score of 0.57 ±0.03 using a k-nearest-neighbors (k-NN) model, outperforming guessing using empirical class prior probabilities (0.26 ±0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.
基于人工智能的计算病理学的目标之一是生成全切片图像 (WSI) 的紧凑表示,这些表示捕获了诊断所需的基本信息。虽然这些方法已经应用于组织病理学,但在细胞学中报道的应用很少。骨髓抽吸细胞学是血液学中关键临床决策的基础。然而,抽吸标本的视觉检查是一个繁琐且复杂的过程,解释存在差异,并且血液病理学专业知识稀缺。生成抽吸标本的紧凑表示的能力可能为血液学中的临床决策支持工具奠定基础。在这项研究中,我们利用我们之前发表的基于端到端人工智能的系统来对骨髓抽吸 WSI 中的细胞进行计数和分类,该系统允许直接将单个细胞用作输入,而不是 WSI 补丁。然后,我们从每个 WSI 构建单个细胞特征的袋,并应用多实例学习来提取它们的向量表示。为了评估我们表示的质量,我们进行了 WSI 检索和分类任务。我们的结果表明,我们在 WSI 级别的图像检索中实现了 0.58 ±0.02 的 mAP@10,超过了随机检索基线 0.39 ±0.1。此外,我们使用 k-最近邻 (k-NN) 模型对单个抽吸 WSI 预测了五个诊断标签,加权平均 F1 得分为 0.57 ±0.03,优于使用经验类先验概率 (0.26 ±0.02) 的猜测。我们首次探索了在骨髓细胞学中使用深度学习生成可训练机制来生成紧凑的幻灯片级表示的方法。这种方法有可能总结 WSI 中的复杂语义信息,以提高血液学中的诊断效果,并最终支持人工智能辅助的计算病理学方法。