Tian Huiyuan, Tian Yongshao, Li Dujuan, Zhao Minfan, Luo Qiankun, Kong Lingfei, Qin Tao
Department of Scientific Research and Foreign Affairs, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
Front Oncol. 2024 Dec 20;14:1474155. doi: 10.3389/fonc.2024.1474155. eCollection 2024.
The levels of M2 macrophages are significantly associated with the prognosis of hepatocellular carcinoma (HCC), however, current detection methods in clinical settings remain challenging. Our study aims to develop a weakly supervised artificial intelligence model using globally labeled histological images, to predict M2 macrophage levels and forecast the prognosis of HCC patients by integrating clinical features.
CIBERSORTx was used to calculate M2 macrophage abundance. We developed a slide-level, weakly-supervised clustering method for Whole Slide Images (WSIs) by integrating Masked Autoencoders (MAE) with ResNet-32t to predict M2 macrophage abundance.
We developed an MAE-ResNet model to predict M2 macrophage levels using WSIs. In the testing dataset, the area under the curve (AUC) (95% CI) was 0.73 (0.59-0.87). We constructed a Cox regression model showing that the predicted probabilities of M2 macrophage abundance were negatively associated with the prognosis of HCC (HR=1.89, p=0.031). Furthermore, we incorporated clinical data, screened variables using Lasso regression, and built the comprehensive prediction model that better predicted prognosis. (HR=2.359, p=0.001).
Our models effectively predicted M2 macrophage levels and HCC prognosis. The findings suggest that our models offer a novel method for determining biomarker levels and forecasting prognosis, eliminating additional clinical tests, thereby delivering substantial clinical benefits.
M2巨噬细胞水平与肝细胞癌(HCC)的预后显著相关,然而,临床环境中的当前检测方法仍然具有挑战性。我们的研究旨在开发一种使用全局标记组织学图像的弱监督人工智能模型,通过整合临床特征来预测M2巨噬细胞水平并预测HCC患者的预后。
使用CIBERSORTx计算M2巨噬细胞丰度。我们通过将掩码自动编码器(MAE)与ResNet-32t集成,开发了一种用于全切片图像(WSIs)的玻片级弱监督聚类方法,以预测M2巨噬细胞丰度。
我们开发了一种MAE-ResNet模型,使用WSIs预测M2巨噬细胞水平。在测试数据集中,曲线下面积(AUC)(95%CI)为0.73(0.59-0.87)。我们构建了一个Cox回归模型,表明M2巨噬细胞丰度的预测概率与HCC的预后呈负相关(HR=1.89,p=0.031)。此外,我们纳入了临床数据,使用Lasso回归筛选变量,并建立了能更好预测预后的综合预测模型(HR=2.359,p=0.001)。
我们的模型有效预测了M2巨噬细胞水平和HCC预后。研究结果表明,我们的模型提供了一种确定生物标志物水平和预测预后的新方法,无需额外的临床检测,从而带来显著的临床益处。