Suppr超能文献

利用可穿戴惯性传感器根据下肢运动学和垂直加速度估算步态期间的垂直地面反作用力。

Estimating vertical ground reaction forces during gait from lower limb kinematics and vertical acceleration using wearable inertial sensors.

作者信息

Martínez-Pascual David, Catalán José M, Blanco-Ivorra Andrea, Sanchís Mónica, Arán-Ais Francisca, García-Aracil Nicolás

机构信息

Biomedical Neuroengineering Research Group, Robotics and Artificial Intelligence Unit, Bioengineering Institute, Miguel Hernandez University, Elche, Spain.

INESCOP Footwear Technology Center, Elda, Alicante, Spain.

出版信息

Front Bioeng Biotechnol. 2023 Sep 29;11:1199459. doi: 10.3389/fbioe.2023.1199459. eCollection 2023.

Abstract

One of the most important forces generated during gait is the vertical ground reaction force (vGRF). This force can be measured using force plates, but these can limit the scope of gait analysis. This paper presents a method to estimate the vGRF using inertial measurement units (IMU) and machine learning techniques. Four wearable IMUs were used to obtain flexion/extension angles of the hip, knee, and ankle joints, and an IMU placed over the C7 vertebra to measure vertical acceleration. We trained and compared the performance of two machine learning algorithms: feedforward neural networks (FNN) and random forest (RF). We investigated the importance of the inputs introduced into the models and analyzed in detail the contribution of lower limb kinematics and vertical acceleration to model performance. The results suggest that the inclusion of vertical acceleration increases the root mean square error in the FNN, while the RF appears to decrease it. We also analyzed the ability of the models to construct the force signal, with particular emphasis on the magnitude and timing of the vGRF peaks. Using the proposed method, we concluded that FNN and RF models can estimate the vGRF with high accuracy.

摘要

步态过程中产生的最重要力量之一是垂直地面反作用力(vGRF)。这种力可以使用测力台进行测量,但这可能会限制步态分析的范围。本文提出了一种使用惯性测量单元(IMU)和机器学习技术来估计vGRF的方法。使用四个可穿戴式IMU来获取髋、膝和踝关节的屈伸角度,并在C7椎体上方放置一个IMU来测量垂直加速度。我们训练并比较了两种机器学习算法的性能:前馈神经网络(FNN)和随机森林(RF)。我们研究了输入到模型中的变量的重要性,并详细分析了下肢运动学和垂直加速度对模型性能的贡献。结果表明,纳入垂直加速度会增加FNN中的均方根误差,而RF似乎会降低该误差。我们还分析了模型构建力信号的能力,特别关注vGRF峰值的大小和时间。使用所提出的方法,我们得出结论,FNN和RF模型可以高精度地估计vGRF。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa2c/10570513/4ad7c2028853/fbioe-11-1199459-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验