Martínez-Pascual David, Catalán José M, Blanco-Ivorra Andrea, Sanchís Mónica, Arán-Ais Francisca, García-Aracil Nicolás
Biomedical Neuroengineering Research Group, Robotics and Artificial Intelligence Unit, Bioengineering Institute, Miguel Hernandez University, Elche, Spain.
INESCOP Footwear Technology Center, Elda, Alicante, Spain.
Front Bioeng Biotechnol. 2023 Sep 29;11:1199459. doi: 10.3389/fbioe.2023.1199459. eCollection 2023.
One of the most important forces generated during gait is the vertical ground reaction force (vGRF). This force can be measured using force plates, but these can limit the scope of gait analysis. This paper presents a method to estimate the vGRF using inertial measurement units (IMU) and machine learning techniques. Four wearable IMUs were used to obtain flexion/extension angles of the hip, knee, and ankle joints, and an IMU placed over the C7 vertebra to measure vertical acceleration. We trained and compared the performance of two machine learning algorithms: feedforward neural networks (FNN) and random forest (RF). We investigated the importance of the inputs introduced into the models and analyzed in detail the contribution of lower limb kinematics and vertical acceleration to model performance. The results suggest that the inclusion of vertical acceleration increases the root mean square error in the FNN, while the RF appears to decrease it. We also analyzed the ability of the models to construct the force signal, with particular emphasis on the magnitude and timing of the vGRF peaks. Using the proposed method, we concluded that FNN and RF models can estimate the vGRF with high accuracy.
步态过程中产生的最重要力量之一是垂直地面反作用力(vGRF)。这种力可以使用测力台进行测量,但这可能会限制步态分析的范围。本文提出了一种使用惯性测量单元(IMU)和机器学习技术来估计vGRF的方法。使用四个可穿戴式IMU来获取髋、膝和踝关节的屈伸角度,并在C7椎体上方放置一个IMU来测量垂直加速度。我们训练并比较了两种机器学习算法的性能:前馈神经网络(FNN)和随机森林(RF)。我们研究了输入到模型中的变量的重要性,并详细分析了下肢运动学和垂直加速度对模型性能的贡献。结果表明,纳入垂直加速度会增加FNN中的均方根误差,而RF似乎会降低该误差。我们还分析了模型构建力信号的能力,特别关注vGRF峰值的大小和时间。使用所提出的方法,我们得出结论,FNN和RF模型可以高精度地估计vGRF。