Suppr超能文献

使用细胞表面标志物优化基于深度学习的密集堆积细胞分割

Optimizing Deep Learning-Based Segmentation of Densely Packed Cells using Cell Surface Markers.

作者信息

Han Sunwoo, Phasouk Khamsone, Zhu Jia, Fong Youyi

机构信息

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA.

出版信息

Res Sq. 2023 Sep 26:rs.3.rs-3307496. doi: 10.21203/rs.3.rs-3307496/v1.

Abstract

BACKGROUND

Spatial molecular profiling depends on accurate cell segmentation. Identification and quantitation of individual cells in dense tissues, e.g. highly inflamed tissue caused by viral infection or immune reaction, remains a challenge.

METHODS

We first assess the performance of 18 deep learning-based cell segmentation models, either pre-trained or trained by us using two public image sets, on a set of immunofluorescence images stained with immune cell surface markers in skin tissue obtained during human herpes simplex virus (HSV) infection. We then further train eight of these models using up to 10,000+ training instances from the current image set. Finally, we seek to improve performance by tuning parameters of the most successful method from the previous step.

RESULTS

The best model before fine-tuning achieves a mean Average Precision (mAP) of 0.516. Prediction performance improves substantially after training. The best model is the cyto model from Cellpose. After training, it achieves an mAP of 0.694; with further parameter tuning, the mAP reaches 0.711.

CONCLUSION

Selecting the best model among the existing approaches and further training the model with images of interest produce the most gain in prediction performance. The performance of the resulting model compares favorably to human performance. The imperfection of the final model performance can be attributed to the moderate signal-to-noise ratio i the imageset.

摘要

背景

空间分子分析依赖于准确的细胞分割。在致密组织中识别和定量单个细胞,例如由病毒感染或免疫反应引起的高度炎症组织中的细胞,仍然是一项挑战。

方法

我们首先使用在人类单纯疱疹病毒(HSV)感染期间获得的皮肤组织中用免疫细胞表面标志物染色的一组免疫荧光图像,评估18种基于深度学习的细胞分割模型的性能,这些模型要么是预训练的,要么是我们使用两个公共图像集训练的。然后,我们使用当前图像集中多达10000多个训练实例对其中8个模型进行进一步训练。最后,我们试图通过调整上一步中最成功方法的参数来提高性能。

结果

微调前的最佳模型平均平均精度(mAP)为0.516。训练后预测性能大幅提高。最佳模型是Cellpose中的cyto模型。训练后,它的mAP达到0.694;通过进一步的参数调整,mAP达到0.711。

结论

在现有方法中选择最佳模型并使用感兴趣的图像对模型进行进一步训练,在预测性能方面收获最大。所得模型的性能与人类表现相当。最终模型性能的不完善可归因于图像集中中等的信噪比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cb2/10571619/014f92a0966b/nihpp-rs3307496v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验