Suppr超能文献

基于两步深度学习方法的 X 射线微计算机断层扫描图像中骨小梁微损伤的分割。

Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method.

机构信息

Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada.

Centre de recherche du CHU Sainte Justine, CHU Sainte Justine, Montréal, QC, Canada.

出版信息

J Mech Behav Biomed Mater. 2023 Jan;137:105540. doi: 10.1016/j.jmbbm.2022.105540. Epub 2022 Oct 25.

Abstract

INTRODUCTION

One of the current approaches to improve our understanding of osteoporosis is to study the development of bone microdamage under mechanical loading. The current practice for evaluating bone microdamage is to quantify damage volume from images of bone samples stained with a contrast agent, often composed of toxic heavy metals and requiring long tissue preparation. This work aims to evaluate the potential of linear microcracks detection and segmentation in trabecular bone samples using well-known deep learning models, namely YOLOv4 and Unet, applied on microCT images.

METHODS

Six trabecular bovine bone cylinders underwent compression until ultimate stress and were subsequently imaged with a microCT at a resolution of 1.95 μm. Two of these samples (samples 1 and 2) were then stained using barium sulfate (BaSO) and imaged again. The unstained samples (samples 3-6) were used to train two neural networks YOLOv4 to detect regions with microdamage further combined with Unet to segment the microdamage at the pixel level in the detected regions. Four different model versions of YOLOv4 were compared using the average Intersection over Union (IoU) and the mean average precision (mAP). The performance of Unet was also measured using two segmentation metrics, the Dice Score and the Intersection over Union (IoU). A qualitative comparison was finally done between the deep learning and the contrast agent approaches.

RESULTS

Among the four versions of YOLOv4, the YOLOv4p5 model resulted in the best performance with an average IoU of 45,32% and 51,12% and a mAP of 28.79% and 46.22%, respectively for samples 1 and 2. The segmentation performance of Unet provided better IoU and DICE score on sample 2 compared to sample 1. The poorer performance of the test on sample 1 could be explained by its poorer contrast to noise ratio (CNR). Indeed, sample 1 resulted in a CNR of 7,96, which was worse than the average CNR in the training samples, while sample 2 resulted in a CNR of 10,08. The qualitative comparison between the contrast agent and the deep learning segmentation showed that two different regions were segmented by the two techniques. Deep learning is segmenting the region inside the cracks while the contrast agent segments the region around it or even regions with no visible damage.

CONCLUSION

The combination of YOLOv4 for microdamage detection with Unet for damage segmentation showed a potential for the detection and segmentation of microdamage in trabecular bone. The accuracy of both neural networks achieved in this work is acceptable considering it is their first application in this specific field and the amount of data was limited. Even if the errors from both neural networks are accumulated, the two-steps approach is faster than the semantic segmentation of the whole volume.

摘要

简介

目前,提高我们对骨质疏松症理解的方法之一是研究在机械载荷下骨微损伤的发展。目前评估骨微损伤的方法是通过对用对比剂染色的骨样本的图像进行定量分析,这些对比剂通常由有毒重金属组成,需要长时间的组织准备。本工作旨在评估使用众所周知的深度学习模型,即 YOLOv4 和 Unet,对小梁骨样本中的线性微裂纹进行检测和分割的潜力,该模型应用于 microCT 图像。

方法

六个牛的小梁骨圆柱体在达到极限应力之前进行压缩,然后用 microCT 以 1.95μm 的分辨率进行成像。这两个样本中的两个(样本 1 和 2)随后用硫酸钡(BaSO)染色并再次成像。未染色的样本(样本 3-6)用于训练两个神经网络 YOLOv4 以检测具有微损伤的区域,并进一步结合 Unet 以在检测到的区域中的像素级分割微损伤。使用平均交并比(IoU)和平均准确率(mAP)比较了四个不同版本的 YOLOv4。还使用两个分割指标,即 Dice 分数和交并比(IoU),测量了 Unet 的性能。最后,对深度学习和对比剂方法进行了定性比较。

结果

在四个 YOLOv4 版本中,YOLOv4p5 模型在样本 1 和 2 上的平均 IoU 分别为 45.32%和 51.12%,mAP 分别为 28.79%和 46.22%,表现最佳。Unet 的分割性能在样本 2 上比样本 1 提供了更好的 IoU 和 DICE 分数。样本 1 的测试性能较差可能是由于其与噪声的对比率(CNR)较差。实际上,样本 1 的 CNR 为 7.96,这比训练样本的平均 CNR 差,而样本 2 的 CNR 为 10.08。对比剂和深度学习分割之间的定性比较表明,两种技术分割了两个不同的区域。深度学习分割裂纹内部区域,而对比剂则分割裂纹周围区域,甚至是没有可见损伤的区域。

结论

YOLOv4 用于微损伤检测与 Unet 用于损伤分割的结合显示出在小梁骨中检测和分割微损伤的潜力。考虑到这是这两种神经网络在该特定领域的首次应用,并且数据量有限,这两种神经网络在本工作中达到的准确性是可以接受的。即使两种神经网络的误差累加,两步法也比整个体积的语义分割快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验