Suppr超能文献

一种用于重度抑郁症诊断的基于注意力的多模态磁共振成像融合模型。

An attention-based multi-modal MRI fusion model for major depressive disorder diagnosis.

作者信息

Zheng Guowei, Zheng Weihao, Zhang Yu, Wang Junyu, Chen Miao, Wang Yin, Cai Tianhong, Yao Zhijun, Hu Bin

机构信息

Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China.

出版信息

J Neural Eng. 2023 Nov 15;20(6). doi: 10.1088/1741-2552/ad038c.

Abstract

Major depressive disorder (MDD) is one of the biggest threats to human mental health. MDD is characterized by aberrant changes in both structure and function of the brain. Although recent studies have developed some deep learning models based on multi-modal magnetic resonance imaging (MRI) for MDD diagnosis, the latent associations between deep features derived from different modalities were largely unexplored by previous studies, which we hypothesized may have potential benefits in improving the diagnostic accuracy of MDD.In this study, we proposed a novel deep learning model that fused both structural MRI (sMRI) and resting-state MRI (rs-fMRI) data to enhance the diagnosis of MDD by capturing the interactions between deep features extracted from different modalities. Specifically, we first employed a brain function encoder (BFE) and a brain structure encoder (BSE) to extract the deep features from fMRI and sMRI, respectively. Then, we designed a function and structure co-attention fusion (FSCF) module that captured inter-modal interactions and adaptively fused multi-modal deep features for MDD diagnosis.This model was evaluated on a large cohort and achieved a high classification accuracy of 75.2% for MDD diagnosis. Moreover, the attention distribution of the FSCF module assigned higher attention weights to structural features than functional features for diagnosing MDD.The high classification accuracy highlights the effectiveness and potential clinical of the proposed model.

摘要

重度抑郁症(MDD)是对人类心理健康的最大威胁之一。MDD的特征是大脑结构和功能的异常变化。尽管最近的研究已经开发了一些基于多模态磁共振成像(MRI)的深度学习模型用于MDD诊断,但以往研究在很大程度上未探索不同模态衍生的深度特征之间的潜在关联,我们推测这可能对提高MDD的诊断准确性具有潜在益处。在本研究中,我们提出了一种新颖的深度学习模型,该模型融合了结构MRI(sMRI)和静息态MRI(rs-fMRI)数据,通过捕捉从不同模态提取的深度特征之间的相互作用来加强MDD的诊断。具体而言,我们首先使用脑功能编码器(BFE)和脑结构编码器(BSE)分别从功能磁共振成像(fMRI)和sMRI中提取深度特征。然后,我们设计了一个功能与结构协同注意力融合(FSCF)模块,该模块捕捉模态间相互作用并自适应融合多模态深度特征以用于MDD诊断。该模型在一个大型队列上进行了评估,在MDD诊断中实现了75.2%的高分类准确率。此外,FSCF模块的注意力分布在诊断MDD时赋予结构特征的注意力权重高于功能特征。高分类准确率突出了所提出模型的有效性和潜在临床应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验