Suppr超能文献

使用多模态MRI成像的用于自动MDD诊断的进化神经架构搜索

Evolutionary neural architecture search for automated MDD diagnosis using multimodal MRI imaging.

作者信息

Li Tongtong, Hou Ning, Yu Jiandong, Zhao Ziyang, Sun Qi, Chen Miao, Yao Zhijun, Ma Sujie, Zhou Jiansong, Hu Bin

机构信息

School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.

Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou 730000, China.

出版信息

iScience. 2024 Sep 24;27(10):111020. doi: 10.1016/j.isci.2024.111020. eCollection 2024 Oct 18.

Abstract

Major depressive disorder (MDD) is a prevalent mental disorder with serious impacts on life and health. Neuroimaging offers valuable diagnostic insights. However, traditional computer-aided diagnosis methods are limited by reliance on researchers' experience. To address this, we proposed an evolutionary neural architecture search (M-ENAS) framework for automatically diagnosing MDD using multi-modal magnetic resonance imaging (MRI). M-ENAS determines the optimal weight and network architecture through a two-stage search method. Specifically, we designed a one-shot network architecture search (NAS) strategy to train supernet weights and a self-defined evolutionary search to optimize the network structure. Finally, M-ENAS was evaluated on two datasets, demonstrating that M-ENAS outperforms existing hand-designed methods. Additionally, our findings reveal that brain regions within the somatomotor network play important roles in the diagnosis of MDD, providing additional insight into the biological mechanisms underlying the disorder.

摘要

重度抑郁症(MDD)是一种普遍存在的精神障碍,对生活和健康有严重影响。神经影像学提供了有价值的诊断见解。然而,传统的计算机辅助诊断方法受到对研究人员经验依赖的限制。为了解决这个问题,我们提出了一种进化神经架构搜索(M-ENAS)框架,用于使用多模态磁共振成像(MRI)自动诊断MDD。M-ENAS通过两阶段搜索方法确定最佳权重和网络架构。具体来说,我们设计了一种一次性网络架构搜索(NAS)策略来训练超网络权重,并设计了一种自定义进化搜索来优化网络结构。最后,在两个数据集上对M-ENAS进行了评估,结果表明M-ENAS优于现有的手工设计方法。此外,我们的研究结果表明,躯体运动网络中的脑区在MDD诊断中起重要作用,为该疾病的生物学机制提供了更多见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7756/11490728/fea84aff6e23/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验