Wang Junyu, Li Tongtong, Sun Qi, Guo Yuhui, Yu Jiandong, Yao Zhijun, Hou Ning, Hu Bin
School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.
Gansu Provincial Key Laboratory of Wearable Computing, Lanzhou University, Lanzhou 730000, China.
Brain Sci. 2023 Nov 15;13(11):1590. doi: 10.3390/brainsci13111590.
Major Depressive Disorder (MDD) is a common mental illness resulting in immune disorders and even thoughts of suicidal behavior. Neuroimaging techniques serve as a quantitative tool for the assessment of MDD diagnosis. In the domain of computer-aided magnetic resonance imaging diagnosis, current research predominantly focuses on isolated local or global information, often neglecting the synergistic integration of multiple data sources, thus potentially overlooking valuable details. To address this issue, we proposed a diagnostic model for MDD that integrates high-frequency and low-frequency information using data from diffusion tensor imaging (DTI), structural magnetic resonance imaging (sMRI), and functional magnetic resonance imaging (fMRI). First, we designed a meta-low-frequency encoder (MLFE) and a meta-high-frequency encoder (MHFE) to extract the low-frequency and high-frequency feature information from DTI and sMRI, respectively. Then, we utilized a multilayer perceptron (MLP) to extract features from fMRI data. Following the feature cross-fusion, we designed the ensemble learning threshold voting method to determine the ultimate diagnosis for MDD. The model achieved accuracy, precision, specificity, F1-score, MCC, and AUC values of 0.724, 0.750, 0.882, 0.600, 0.421, and 0.667, respectively. This approach provides new research ideas for the diagnosis of MDD.
重度抑郁症(MDD)是一种常见的精神疾病,会导致免疫紊乱甚至产生自杀行为的念头。神经成像技术是评估MDD诊断的一种定量工具。在计算机辅助磁共振成像诊断领域,当前的研究主要集中在孤立的局部或全局信息上,常常忽略了多个数据源的协同整合,因此可能会忽略有价值的细节。为了解决这个问题,我们提出了一种用于MDD的诊断模型,该模型使用来自扩散张量成像(DTI)、结构磁共振成像(sMRI)和功能磁共振成像(fMRI)的数据来整合高频和低频信息。首先,我们设计了一个元低频编码器(MLFE)和一个元高频编码器(MHFE),分别从DTI和sMRI中提取低频和高频特征信息。然后,我们利用多层感知器(MLP)从fMRI数据中提取特征。在进行特征交叉融合之后,我们设计了集成学习阈值投票方法来确定MDD的最终诊断。该模型的准确率、精确率、特异性、F1分数、马修斯相关系数(MCC)和曲线下面积(AUC)值分别为0.724、0.750、0.882、0.600、0.421和0.667。这种方法为MDD的诊断提供了新的研究思路。