Suppr超能文献

在 1200 万份英国初级保健记录中,心血管、肾脏、代谢和精神健康状况的流行情况及其人口统计学差异。

Prevalence and demographic variation of cardiovascular, renal, metabolic, and mental health conditions in 12 million english primary care records.

机构信息

Institute of Applied Health Research, Health Data Science and Public Health, University of Birmingham, Birmingham, UK.

School of Medicine, University of St Andrews, Fife, UK.

出版信息

BMC Med Inform Decis Mak. 2023 Oct 16;23(1):220. doi: 10.1186/s12911-023-02296-z.

Abstract

BACKGROUND

Primary care electronic health records (EHR) are widely used to study long-term conditions in epidemiological and health services research. Therefore, it is important to understand how well the recorded prevalence of these conditions in EHRs, compares to other reliable sources overall, and varies by socio-demographic characteristics. We aimed to describe the prevalence and socio-demographic variation of cardiovascular, renal, and metabolic (CRM) and mental health (MH) conditions in a large, nationally representative, English primary care database and compare with prevalence estimates from other population-based studies.

METHODS

This was a cross-sectional study using the Clinical Practice Research Datalink (CPRD) Aurum primary care database. We calculated prevalence of 18 conditions and used logistic regression to assess how this varied by age, sex, ethnicity, and socio-economic status. We searched the literature for population prevalence estimates from other sources for comparison with the prevalences in CPRD Aurum.

RESULTS

Depression (16.0%, 95%CI 16.0-16.0%) and hypertension (15.3%, 95%CI 15.2-15.3%) were the most prevalent conditions among 12.4 million patients. Prevalence of most conditions increased with socio-economic deprivation and age. CRM conditions, schizophrenia and substance misuse were higher in men, whilst anxiety, depression, bipolar and eating disorders were more common in women. Cardiovascular risk factors (hypertension and diabetes) were more prevalent in black and Asian patients compared with white, but the trends in prevalence of cardiovascular diseases by ethnicity were more variable. The recorded prevalences of mental health conditions were typically twice as high in white patients compared with other ethnic groups. However, PTSD and schizophrenia were more prevalent in black patients. The prevalence of most conditions was similar or higher in the primary care database than diagnosed disease prevalence reported in national health surveys. However, screening studies typically reported higher prevalence estimates than primary care data, especially for PTSD, bipolar disorder and eating disorders.

CONCLUSIONS

The prevalence of many clinically diagnosed conditions in primary care records closely matched that of other sources. However, we found important variations by sex and ethnicity, which may reflect true variation in prevalence or systematic differences in clinical presentation and practice. Primary care data may underrepresent the prevalence of undiagnosed conditions, particularly in mental health.

摘要

背景

初级保健电子健康记录(EHR)广泛用于流行病学和卫生服务研究中的长期疾病研究。因此,了解 EHR 中记录的这些疾病的流行程度与其他可靠来源相比总体上的差异,以及按社会人口统计学特征的差异是很重要的。我们旨在描述一个大型的、全国代表性的、英语初级保健数据库中心血管、肾脏和代谢(CRM)和心理健康(MH)疾病的流行情况及其社会人口统计学差异,并将其与其他基于人群的研究的流行率估计值进行比较。

方法

这是一项使用临床实践研究数据链接(CPRD)Aurum 初级保健数据库的横断面研究。我们计算了 18 种疾病的患病率,并使用逻辑回归评估了年龄、性别、种族和社会经济地位对其的影响。我们在文献中搜索了其他来源的人群患病率估计值,以便与 CPRD Aurum 的患病率进行比较。

结果

在 1240 万患者中,抑郁症(16.0%,95%CI 16.0-16.0%)和高血压(15.3%,95%CI 15.2-15.3%)是最常见的疾病。大多数疾病的患病率随着社会经济剥夺程度和年龄的增加而增加。CRM 疾病、精神分裂症和物质使用障碍在男性中更为常见,而焦虑症、抑郁症、双相情感障碍和饮食障碍在女性中更为常见。与白人相比,黑人患者和亚洲患者的心血管危险因素(高血压和糖尿病)更为普遍,但不同族裔的心血管疾病患病率的趋势更为多变。白人患者的心理健康状况的记录患病率通常是其他族裔的两倍,但黑人患者的创伤后应激障碍和精神分裂症的患病率更高。大多数疾病的患病率在初级保健数据库中与国家健康调查中报告的诊断疾病患病率相似或更高。然而,筛查研究通常报告的患病率高于初级保健数据,尤其是对于创伤后应激障碍、双相情感障碍和饮食障碍。

结论

初级保健记录中许多临床诊断疾病的流行程度与其他来源密切匹配。然而,我们发现性别和种族方面存在重要差异,这可能反映了真实的流行率差异或临床表现和实践的系统差异。初级保健数据可能低估了未诊断疾病的患病率,尤其是在心理健康方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1966/10580600/ce2592907c96/12911_2023_2296_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验