Suppr超能文献

新型颗粒水凝胶生物墨水可改善生物打印构建体的生物学功能。

Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs.

作者信息

Tuftee Cody, Alsberg Eben, Ozbolat Ibrahim Tarik, Rizwan Muhammad

机构信息

Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA.

Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, Chicago, IL 60612, USA.

出版信息

Trends Biotechnol. 2024 Mar;42(3):339-352. doi: 10.1016/j.tibtech.2023.09.007. Epub 2023 Oct 16.

Abstract

Advancements in 3D bioprinting have been hindered by the trade-off between printability and biological functionality. Existing bioinks struggle to meet both requirements simultaneously. However, new types of bioinks composed of densely packed microgels promise to address this challenge. These bioinks possess intrinsic porosity, allowing for cell growth, oxygen and nutrient transport, and better immunomodulatory properties, leading to superior biological functions. In this review, we highlight key trends in the development of these granular bioinks. Using examples, we demonstrate how granular bioinks overcome the trade-off between printability and cell function. Granular bioinks show promise in 3D bioprinting, yet understanding their unique structure-property-function relationships is crucial to fully leverage the transformative capabilities of these new types of bioinks in bioprinting.

摘要

3D生物打印的进展一直受到可打印性和生物功能之间权衡的阻碍。现有的生物墨水难以同时满足这两个要求。然而,由密集堆积的微凝胶组成的新型生物墨水有望应对这一挑战。这些生物墨水具有内在孔隙率,允许细胞生长、氧气和营养物质传输,并具有更好的免疫调节特性,从而带来卓越的生物功能。在这篇综述中,我们突出了这些颗粒状生物墨水开发的关键趋势。通过实例,我们展示了颗粒状生物墨水如何克服可打印性和细胞功能之间的权衡。颗粒状生物墨水在3D生物打印中显示出前景,但了解它们独特的结构-性能-功能关系对于充分利用这些新型生物墨水在生物打印中的变革能力至关重要。

相似文献

1
Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs.
Trends Biotechnol. 2024 Mar;42(3):339-352. doi: 10.1016/j.tibtech.2023.09.007. Epub 2023 Oct 16.
2
Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting.
Small. 2022 Sep;18(37):e2202390. doi: 10.1002/smll.202202390. Epub 2022 Aug 3.
4
3D Bioprinting Using Universal Fugitive Network Bioinks.
ACS Appl Bio Mater. 2024 Oct 21;7(10):7040-7050. doi: 10.1021/acsabm.4c01220. Epub 2024 Sep 18.
5
Advancing bioinks for 3D bioprinting using reactive fillers: A review.
Acta Biomater. 2020 Sep 1;113:1-22. doi: 10.1016/j.actbio.2020.06.040. Epub 2020 Jul 2.
6
Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
Adv Healthc Mater. 2020 Aug;9(15):e1901648. doi: 10.1002/adhm.201901648. Epub 2020 Apr 30.
7
Nanocomposite bioinks for 3D bioprinting.
Acta Biomater. 2022 Oct 1;151:45-69. doi: 10.1016/j.actbio.2022.08.014. Epub 2022 Aug 13.
8
Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives.
Adv Healthc Mater. 2024 Oct;13(25):e2301388. doi: 10.1002/adhm.202301388. Epub 2023 Jun 27.
9
Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
Tissue Eng Part A. 2020 Mar;26(5-6):318-338. doi: 10.1089/ten.TEA.2019.0298.

引用本文的文献

3
Microgel-based bioink for extrusion-based 3D bioprinting and its applications in tissue engineering.
Bioact Mater. 2025 Feb 20;48:273-293. doi: 10.1016/j.bioactmat.2025.02.003. eCollection 2025 Jun.
4
A Programmable Handheld Extrusion-Based Bioprinting Platform for In Situ Skin Wounds Dressing: Balance Mobility and Customizability.
Adv Sci (Weinh). 2024 Dec;11(46):e2405823. doi: 10.1002/advs.202405823. Epub 2024 Oct 22.
5
The microparticulate inks for bioprinting applications.
Mater Today Bio. 2023 Dec 26;24:100930. doi: 10.1016/j.mtbio.2023.100930. eCollection 2024 Feb.

本文引用的文献

1
Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds.
Adv Mater. 2023 Dec;35(49):e2304049. doi: 10.1002/adma.202304049. Epub 2023 Oct 27.
2
Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives.
Adv Healthc Mater. 2024 Oct;13(25):e2301388. doi: 10.1002/adhm.202301388. Epub 2023 Jun 27.
3
3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators.
Sci Adv. 2023 Mar 31;9(13):eade7880. doi: 10.1126/sciadv.ade7880.
4
Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity.
Adv Healthc Mater. 2023 Jul;12(17):e2202110. doi: 10.1002/adhm.202202110. Epub 2023 Apr 2.
6
A Balance between Pro-Inflammatory and Pro-Reparative Macrophages is Observed in Regenerative D-MAPS.
Adv Sci (Weinh). 2023 Apr;10(11):e2204882. doi: 10.1002/advs.202204882. Epub 2023 Feb 10.
7
Multisized Photoannealable Microgels Regulate Cell Spreading, Aggregation, and Macrophage Phenotype through Microporous Void Space.
Adv Healthc Mater. 2023 May;12(13):e2202239. doi: 10.1002/adhm.202202239. Epub 2023 Feb 8.
8
Photoinduced Dithiolane Crosslinking for Multiresponsive Dynamic Hydrogels.
Adv Mater. 2024 Oct;36(43):e2211209. doi: 10.1002/adma.202211209. Epub 2023 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验