Suppr超能文献

双特异性 T 细胞衔接器的开发:利用定量系统药理学。

Development of bispecific T cell engagers: harnessing quantitative systems pharmacology.

机构信息

Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Trends Pharmacol Sci. 2023 Dec;44(12):880-890. doi: 10.1016/j.tips.2023.09.009. Epub 2023 Oct 17.

Abstract

Bispecific T cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. Several bsTCEs have achieved marketing approval; dozens more are under clinical investigation. However, the clinical development of bsTCEs remains rife with challenges, including nuanced pharmacology, limited translatability of preclinical findings, frequent on-target toxicity, and convoluted dosing regimens. In this opinion article we present a distinct perspective on how quantitative systems pharmacology (QSP) can serve as a powerful tool for overcoming these obstacles. Recent advances in QSP modeling have empowered developers of bsTCEs to gain a deeper understanding of their context-dependent pharmacology, bridge gaps in experimental data, guide first-in-human (FIH) dose selection, design dosing regimens with expanded therapeutic windows, and improve long-term treatment outcomes. We use recent case studies to exemplify the potential of QSP techniques to support future bsTCE development.

摘要

双特异性 T 细胞衔接器(bsTCE)已成为一类有前途的癌症免疫疗法。有几种 bsTCE 已获得市场批准;还有数十种正在临床研究中。然而,bsTCE 的临床开发仍然充满挑战,包括细微的药理学、临床前发现的有限可转化性、频繁的靶毒性和复杂的给药方案。在这篇观点文章中,我们提出了一个不同的观点,即定量系统药理学(QSP)如何可以作为克服这些障碍的强大工具。QSP 建模的最新进展使 bsTCE 的开发者能够更深入地了解其与上下文相关的药理学,弥合实验数据的差距,指导首次人体(FIH)剂量选择,设计具有扩展治疗窗口的给药方案,并改善长期治疗效果。我们使用最近的案例研究来说明 QSP 技术支持未来 bsTCE 开发的潜力。

相似文献

1
Development of bispecific T cell engagers: harnessing quantitative systems pharmacology.
Trends Pharmacol Sci. 2023 Dec;44(12):880-890. doi: 10.1016/j.tips.2023.09.009. Epub 2023 Oct 17.
3
Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies.
J Hematol Oncol. 2021 May 3;14(1):75. doi: 10.1186/s13045-021-01084-4.
4
Translation and Clinical Development of Bispecific T-cell Engaging Antibodies for Cancer Treatment.
Clin Pharmacol Ther. 2017 May;101(5):634-645. doi: 10.1002/cpt.651.
6
Dosing Strategies and Quantitative Clinical Pharmacology for Bispecific T-Cell Engagers Development in Oncology.
Clin Pharmacol Ther. 2024 Sep;116(3):637-646. doi: 10.1002/cpt.3361. Epub 2024 Jul 4.
8
A Quantitative Systems Pharmacology Model of T Cell Engager Applied to Solid Tumor.
AAPS J. 2020 Jun 12;22(4):85. doi: 10.1208/s12248-020-00450-3.
10
Strategies for clinical dose optimization of T cell-engaging therapies in oncology.
MAbs. 2023 Jan-Dec;15(1):2181016. doi: 10.1080/19420862.2023.2181016.

引用本文的文献

1
Multi-physiology modeling of the immune system in the era of precision immunotherapy.
Front Immunol. 2025 May 29;16:1548768. doi: 10.3389/fimmu.2025.1548768. eCollection 2025.
2
T-Cell Engager Therapy in Prostate Cancer: Molecular Insights into a New Frontier in Immunotherapy.
Cancers (Basel). 2025 May 29;17(11):1820. doi: 10.3390/cancers17111820.
3
Oncology Dose Optimization: Tailored Approaches to Different Molecular Classes.
Clin Pharmacol Ther. 2025 Jul;118(1):74-79. doi: 10.1002/cpt.3658. Epub 2025 Apr 18.
4
Mechanism of Action and Pharmacokinetics of Approved Bispecific Antibodies.
Biomol Ther (Seoul). 2024 Nov 1;32(6):708-722. doi: 10.4062/biomolther.2024.146. Epub 2024 Oct 25.
5
Engineering Stimuli-Responsive Materials for Precision Medicine.
Small. 2025 Jan;21(1):e2406439. doi: 10.1002/smll.202406439. Epub 2024 Oct 23.
6
Modular Semisynthetic Approach to Generate T Cell-Dependent Bispecific Constructs from Recombinant IgG1 Antibodies.
Bioconjug Chem. 2024 Sep 16;35(10):1524-31. doi: 10.1021/acs.bioconjchem.4c00309.
7
8
Overcoming limitations for antibody-based therapies targeting γδ T (Vg9Vd2) cells.
Front Immunol. 2024 Jul 31;15:1432015. doi: 10.3389/fimmu.2024.1432015. eCollection 2024.
9
Advancing cancer drug development with mechanistic mathematical modeling: bridging the gap between theory and practice.
J Pharmacokinet Pharmacodyn. 2024 Dec;51(6):581-604. doi: 10.1007/s10928-024-09930-x. Epub 2024 Jun 21.

本文引用的文献

1
Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy.
Front Immunol. 2023 Aug 14;14:1195194. doi: 10.3389/fimmu.2023.1195194. eCollection 2023.
2
Epcoritamab: First Approval.
Drugs. 2023 Sep;83(14):1331-1340. doi: 10.1007/s40265-023-01930-4.
4
Glofitamab: First Approval.
Drugs. 2023 Jul;83(10):935-941. doi: 10.1007/s40265-023-01894-5.
7
The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients.
Cancer Cell. 2023 Apr 10;41(4):711-725.e6. doi: 10.1016/j.ccell.2023.02.008. Epub 2023 Mar 9.
8
Strategies for clinical dose optimization of T cell-engaging therapies in oncology.
MAbs. 2023 Jan-Dec;15(1):2181016. doi: 10.1080/19420862.2023.2181016.
9
Mechanistically modeling peripheral cytokine dynamics following bispecific dosing in solid tumors.
CPT Pharmacometrics Syst Pharmacol. 2023 Nov;12(11):1726-1737. doi: 10.1002/psp4.12928. Epub 2023 Feb 9.
10
Current landscape and future directions of bispecific antibodies in cancer immunotherapy.
Front Immunol. 2022 Oct 28;13:1035276. doi: 10.3389/fimmu.2022.1035276. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验