IA-GCN:用于疾病预测的基于可解释注意力机制的图卷积网络
IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
作者信息
Kazi Anees, Farghadani Soroush, Aganj Iman, Navab Nassir
机构信息
Computer Aided Medical Procedures, Technical University of Munich, Germany.
Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA.
出版信息
Mach Learn Med Imaging. 2023 Oct;14348:382-392. doi: 10.1007/978-3-031-45673-2_38. Epub 2023 Oct 15.
Interpretability in Graph Convolutional Networks (GCNs) has been explored to some extent in general in computer vision; yet, in the medical domain, it requires further examination. Most of the interpretability approaches for GCNs, especially in the medical domain, focus on interpreting the output of the model in a - fashion. In this paper, we propose an interpretable attention module (IAM) that explains the relevance of the input features to the classification task on a GNN Model. The model uses these interpretations to improve its performance. In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning. The main novelty lies in the IAM, which directly operates on input features. IAM learns the attention for each feature based on the unique interpretability-specific losses. We show the application of our model on two publicly available datasets, Tadpole and the UK Biobank (UKBB). For Tadpole we choose the task of disease classification, and for UKBB, age, and sex prediction. The proposed model achieves an increase in an average accuracy of 3.2% for Tadpole and 1.6% for UKBB sex and 2% for the UKBB age prediction task compared to the state-of-the-art. Further, we show exhaustive validation and clinical interpretation of our results.
图卷积网络(GCN)的可解释性在计算机视觉领域总体上已得到一定程度的探索;然而,在医学领域,它仍需要进一步研究。大多数针对GCN的可解释性方法,尤其是在医学领域,都集中于以某种方式解释模型的输出。在本文中,我们提出了一种可解释注意力模块(IAM),它能解释输入特征与GNN模型上分类任务的相关性。该模型利用这些解释来提升其性能。在临床场景中,这样的模型可以协助临床专家在诊断和治疗规划方面做出更好的决策。主要的新颖之处在于IAM,它直接对输入特征进行操作。IAM基于独特的特定于可解释性的损失来学习每个特征的注意力。我们展示了我们的模型在两个公开可用数据集——蝌蚪数据集和英国生物银行(UKBB)上的应用。对于蝌蚪数据集,我们选择疾病分类任务,对于英国生物银行,我们选择年龄和性别预测任务。与最先进的方法相比,所提出的模型在蝌蚪数据集上平均准确率提高了3.2%,在英国生物银行的性别预测任务中提高了1.6%,在英国生物银行的年龄预测任务中提高了2%。此外,我们还展示了对我们结果的详尽验证和临床解释。