Thapaliya Bishal, Akbas Esra, Chen Jiayu, Sapkota Ram, Ray Bhaskar, Suresh Pranav, Calhoun Vince D, Liu Jingyu
Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science (TreNDS), USA; Department of Computer Science, Georgia State University, Atlanta, USA.
Department of Computer Science, Georgia State University, Atlanta, USA.
Med Image Anal. 2025 Apr;101:103433. doi: 10.1016/j.media.2024.103433. Epub 2024 Dec 16.
Resting-state functional magnetic resonance imaging (rsfMRI) is a powerful tool for investigating the relationship between brain function and cognitive processes as it allows for the functional organization of the brain to be captured without relying on a specific task or stimuli. In this paper, we present a novel modeling architecture called BrainRGIN for predicting intelligence (fluid, crystallized and total intelligence) using graph neural networks on rsfMRI derived static functional network connectivity matrices. Extending from the existing graph convolution networks, our approach incorporates a clustering-based embedding and graph isomorphism network in the graph convolutional layer to reflect the nature of the brain sub-network organization and efficient network expression, in combination with TopK pooling and attention-based readout functions. We evaluated our proposed architecture on a large dataset, specifically the Adolescent Brain Cognitive Development Dataset, and demonstrated its effectiveness in predicting individual differences in intelligence. Our model achieved lower mean squared errors and higher correlation scores than existing relevant graph architectures and other traditional machine learning models for all of the intelligence prediction tasks. The middle frontal gyrus exhibited a significant contribution to both fluid and crystallized intelligence, suggesting their pivotal role in these cognitive processes. Total composite scores identified a diverse set of brain regions to be relevant which underscores the complex nature of total intelligence. Our GitHub implementation is publicly available on https://github.com/bishalth01/BrainRGIN/.
静息态功能磁共振成像(rsfMRI)是一种用于研究脑功能与认知过程之间关系的强大工具,因为它能够在不依赖特定任务或刺激的情况下捕捉大脑的功能组织。在本文中,我们提出了一种名为BrainRGIN的新型建模架构,用于基于rsfMRI得出的静态功能网络连通性矩阵,使用图神经网络预测智力(流体智力、晶体智力和总智力)。从现有的图卷积网络扩展而来,我们的方法在图卷积层中纳入了基于聚类的嵌入和图同构网络,以反映脑子网组织的性质和高效的网络表达,并结合了TopK池化和基于注意力的读出函数。我们在一个大型数据集,特别是青少年大脑认知发展数据集中评估了我们提出的架构,并证明了其在预测智力个体差异方面的有效性。对于所有智力预测任务,我们的模型比现有的相关图架构和其他传统机器学习模型实现了更低的均方误差和更高的相关分数。额中回对流体智力和晶体智力均表现出显著贡献,表明它们在这些认知过程中的关键作用。总综合分数确定了一组不同的相关脑区,这突出了总智力的复杂性质。我们在GitHub上的实现可在https://github.com/bishalth01/BrainRGIN/上公开获取。