Suppr超能文献

脑网络与智力:一种基于图神经网络的静息态功能磁共振成像数据研究方法

Brain networks and intelligence: A graph neural network based approach to resting state fMRI data.

作者信息

Thapaliya Bishal, Akbas Esra, Chen Jiayu, Sapkota Ram, Ray Bhaskar, Suresh Pranav, Calhoun Vince D, Liu Jingyu

机构信息

Tri-Institutional Center for Translational Research in Neuro Imaging and Data Science (TreNDS), USA; Department of Computer Science, Georgia State University, Atlanta, USA.

Department of Computer Science, Georgia State University, Atlanta, USA.

出版信息

Med Image Anal. 2025 Apr;101:103433. doi: 10.1016/j.media.2024.103433. Epub 2024 Dec 16.

Abstract

Resting-state functional magnetic resonance imaging (rsfMRI) is a powerful tool for investigating the relationship between brain function and cognitive processes as it allows for the functional organization of the brain to be captured without relying on a specific task or stimuli. In this paper, we present a novel modeling architecture called BrainRGIN for predicting intelligence (fluid, crystallized and total intelligence) using graph neural networks on rsfMRI derived static functional network connectivity matrices. Extending from the existing graph convolution networks, our approach incorporates a clustering-based embedding and graph isomorphism network in the graph convolutional layer to reflect the nature of the brain sub-network organization and efficient network expression, in combination with TopK pooling and attention-based readout functions. We evaluated our proposed architecture on a large dataset, specifically the Adolescent Brain Cognitive Development Dataset, and demonstrated its effectiveness in predicting individual differences in intelligence. Our model achieved lower mean squared errors and higher correlation scores than existing relevant graph architectures and other traditional machine learning models for all of the intelligence prediction tasks. The middle frontal gyrus exhibited a significant contribution to both fluid and crystallized intelligence, suggesting their pivotal role in these cognitive processes. Total composite scores identified a diverse set of brain regions to be relevant which underscores the complex nature of total intelligence. Our GitHub implementation is publicly available on https://github.com/bishalth01/BrainRGIN/.

摘要

静息态功能磁共振成像(rsfMRI)是一种用于研究脑功能与认知过程之间关系的强大工具,因为它能够在不依赖特定任务或刺激的情况下捕捉大脑的功能组织。在本文中,我们提出了一种名为BrainRGIN的新型建模架构,用于基于rsfMRI得出的静态功能网络连通性矩阵,使用图神经网络预测智力(流体智力、晶体智力和总智力)。从现有的图卷积网络扩展而来,我们的方法在图卷积层中纳入了基于聚类的嵌入和图同构网络,以反映脑子网组织的性质和高效的网络表达,并结合了TopK池化和基于注意力的读出函数。我们在一个大型数据集,特别是青少年大脑认知发展数据集中评估了我们提出的架构,并证明了其在预测智力个体差异方面的有效性。对于所有智力预测任务,我们的模型比现有的相关图架构和其他传统机器学习模型实现了更低的均方误差和更高的相关分数。额中回对流体智力和晶体智力均表现出显著贡献,表明它们在这些认知过程中的关键作用。总综合分数确定了一组不同的相关脑区,这突出了总智力的复杂性质。我们在GitHub上的实现可在https://github.com/bishalth01/BrainRGIN/上公开获取。

相似文献

1
Brain networks and intelligence: A graph neural network based approach to resting state fMRI data.
Med Image Anal. 2025 Apr;101:103433. doi: 10.1016/j.media.2024.103433. Epub 2024 Dec 16.
3
DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks.
Med Image Anal. 2025 Apr;101:103462. doi: 10.1016/j.media.2025.103462. Epub 2025 Jan 29.
4
A graph representation of functional diversity of brain regions.
Brain Behav. 2019 Sep;9(9):e01358. doi: 10.1002/brb3.1358. Epub 2019 Jul 27.
5
Contrastive voxel clustering for multiscale modeling of brain network.
Neuroimage. 2024 Aug 15;297:120755. doi: 10.1016/j.neuroimage.2024.120755. Epub 2024 Jul 27.
8
Intrinsic brain mapping of cognitive abilities: A multiple-dataset study on intelligence and its components.
Neuroimage. 2025 Apr 1;309:121094. doi: 10.1016/j.neuroimage.2025.121094. Epub 2025 Feb 18.
9
Temporal stability of functional brain modules associated with human intelligence.
Hum Brain Mapp. 2020 Feb 1;41(2):362-372. doi: 10.1002/hbm.24807. Epub 2019 Oct 6.
10
Mutual Information Better Quantifies Brain Network Architecture in Children with Epilepsy.
Comput Math Methods Med. 2018 Oct 22;2018:6142898. doi: 10.1155/2018/6142898. eCollection 2018.

引用本文的文献

1
Predicting antidepressant response via local-global graph neural network and neuroimaging biomarkers.
NPJ Digit Med. 2025 Aug 12;8(1):515. doi: 10.1038/s41746-025-01912-8.
4
Neural correlates differ between crystallized and fluid intelligence in adolescents.
Transl Psychiatry. 2025 Jul 17;15(1):246. doi: 10.1038/s41398-025-03467-4.
5
LINKING MULTI-SCALE BRAIN CONNECTIVITY WITH VIGILANCE, WORKING MEMORY, AND BEHAVIOR IN ADOLESCENTS.
bioRxiv. 2025 May 11:2025.05.09.653144. doi: 10.1101/2025.05.09.653144.
6
Classification of Major Depressive Disorder Using Graph Attention Mechanism with Multi-Site rs-fMRI Data.
Neuroinformatics. 2025 Jun 13;23(2):34. doi: 10.1007/s12021-025-09731-8.
10

本文引用的文献

1
IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
Mach Learn Med Imaging. 2023 Oct;14348:382-392. doi: 10.1007/978-3-031-45673-2_38. Epub 2023 Oct 15.
2
Accounting for temporal variability in functional magnetic resonance imaging improves prediction of intelligence.
Hum Brain Mapp. 2023 Sep;44(13):4772-4791. doi: 10.1002/hbm.26415. Epub 2023 Jul 19.
4
Human brain structural connectivity matrices-ready for modelling.
Sci Data. 2022 Aug 9;9(1):486. doi: 10.1038/s41597-022-01596-9.
5
The posterior middle temporal gyrus serves as a hub in syntactic comprehension: A model on the syntactic neural network.
Brain Lang. 2022 Sep;232:105162. doi: 10.1016/j.bandl.2022.105162. Epub 2022 Jul 28.
6
Differentiable Graph Module (DGM) for Graph Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1606-1617. doi: 10.1109/TPAMI.2022.3170249. Epub 2023 Jan 6.
7
BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis.
Med Image Anal. 2021 Dec;74:102233. doi: 10.1016/j.media.2021.102233. Epub 2021 Sep 12.
8
Automated eloquent cortex localization in brain tumor patients using multi-task graph neural networks.
Med Image Anal. 2021 Dec;74:102203. doi: 10.1016/j.media.2021.102203. Epub 2021 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验