Department of Laboratory Medicine, Endocrine Laboratory, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, Amsterdam, The Netherlands.
Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.
Eur Thyroid J. 2023 Nov 3;12(6). doi: 10.1530/ETJ-23-0141. Print 2023 Dec 1.
Congenital hypothyroidism (CH) is an inborn thyroid hormone (TH) deficiency mostly caused by thyroidal (primary CH) or hypothalamic/pituitary (central CH) disturbances. Most CH newborn screening (NBS) programs are thyroid-stimulating-hormone (TSH) based, thereby only detecting primary CH. The Dutch NBS is based on measuring total thyroxine (T4) from dried blood spots, aiming to detect primary and central CH at the cost of more false-positive referrals (FPRs) (positive predictive value (PPV) of 21% in 2007-2017). An artificial PPV of 26% was yielded when using a machine learning-based model on the adjusted dataset described based on the Dutch CH NBS. Recently, amino acids (AAs) and acylcarnitines (ACs) have been shown to be associated with TH concentration. We therefore aimed to investigate whether AAs and ACs measured during NBS can contribute to better performance of the CH screening in the Netherlands by using a revised machine learning-based model.
Dutch NBS data between 2007 and 2017 (CH screening results, AAs and ACs) from 1079 FPRs, 515 newborns with primary (431) and central CH (84) and data from 1842 healthy controls were used. A random forest model including these data was developed.
The random forest model with an artificial sensitivity of 100% yielded a PPV of 48% and AUROC of 0.99. Besides T4 and TSH, tyrosine, and succinylacetone were the main parameters contributing to the model's performance.
The PPV improved significantly (26-48%) by adding several AAs and ACs to our machine learning-based model, suggesting that adding these parameters benefits the current algorithm.
先天性甲状腺功能减退症(CH)是一种甲状腺激素(TH)先天缺乏症,主要由甲状腺(原发性 CH)或下丘脑/垂体(中枢性 CH)紊乱引起。大多数 CH 新生儿筛查(NBS)计划基于促甲状腺激素(TSH),因此只能检测原发性 CH。荷兰 NBS 基于测量干血斑中的总甲状腺素(T4),旨在以更多假阳性转诊(FPR)(2007-2017 年的阳性预测值(PPV)为 21%)为代价检测原发性和中枢性 CH。当在基于荷兰 CH NBS 的调整后数据集上使用基于机器学习的模型时,得到的人工 PPV 为 26%。最近,氨基酸(AA)和酰基辅酶 A(AC)已被证明与 TH 浓度相关。因此,我们旨在通过使用修订后的基于机器学习的模型,研究在荷兰 NBS 期间测量的 AA 和 AC 是否可以提高 CH 筛查的性能。
使用来自 1079 个 FPR、515 名患有原发性(431 名)和中枢性 CH(84 名)的新生儿以及 1842 名健康对照者的 2007 年至 2017 年期间的荷兰 NBS 数据(CH 筛查结果、AA 和 AC),开发了一个包含这些数据的随机森林模型。
具有 100%人工敏感性的随机森林模型的 PPV 为 48%,AUROC 为 0.99。除了 T4 和 TSH 外,酪氨酸和琥珀酰丙酮也是该模型性能的主要参数。
通过向我们的基于机器学习的模型添加几个 AA 和 AC,PPV 显著提高(26-48%),这表明添加这些参数有利于当前算法。