Suppr超能文献

动态内皮细胞干/祖细胞-基质相互作用调节血管生成芽的直径。

Dynamic Endothelial Stalk Cell-Matrix Interactions Regulate Angiogenic Sprout Diameter.

作者信息

Wang William Y, Jarman Evan H, Lin Daphne, Baker Brendon M

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.

出版信息

Front Bioeng Biotechnol. 2021 Mar 19;9:620128. doi: 10.3389/fbioe.2021.620128. eCollection 2021.

Abstract

Angiogenesis is a complex, multicellular process that involves bidirectional interactions between extracellular matrix (ECM) and collectively invading endothelial cell (EC) sprouts that extend the microvasculature during development, wound healing, and disease processes. While many aspects of angiogenesis have been well studied, the relationship between endothelial sprout morphology and subsequent neovessel function remains relatively unknown. Here, we investigated how various soluble and physical matrix cues that regulate endothelial sprouting speed and proliferation correspond to changes in sprout morphology, namely, sprout stalk diameter. We found that sprout stalk cells utilize a combination of cytoskeletal forces and proteolysis to physically compact and degrade the surrounding matrix, thus creating sufficient space in three-dimensional (3D) ECM for lateral expansion. As increasing sprout diameter precedes lumenization to generate perfusable neovessels, this work highlights how dynamic endothelial stalk cell-ECM interactions promote the generation of functional neovessels during sprouting angiogenesis to provide insight into the design of vascularized, implantable biomaterials.

摘要

血管生成是一个复杂的多细胞过程,涉及细胞外基质(ECM)与集体侵入的内皮细胞(EC)芽之间的双向相互作用,这些芽在发育、伤口愈合和疾病过程中扩展微血管系统。虽然血管生成的许多方面已得到充分研究,但内皮芽形态与随后的新血管功能之间的关系仍然相对未知。在这里,我们研究了调节内皮芽生长速度和增殖的各种可溶性和物理基质线索如何与芽形态的变化相对应,即芽茎直径。我们发现,芽茎细胞利用细胞骨架力和蛋白水解作用来物理压缩和降解周围的基质,从而在三维(3D)ECM中创造足够的空间进行横向扩展。由于芽直径增加先于管腔形成以产生可灌注的新血管,这项工作突出了动态内皮茎细胞与ECM相互作用如何在发芽血管生成过程中促进功能性新血管的生成,从而为血管化、可植入生物材料的设计提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/8044977/9be51dae05ea/fbioe-09-620128-g001.jpg

相似文献

1
Dynamic Endothelial Stalk Cell-Matrix Interactions Regulate Angiogenic Sprout Diameter.
Front Bioeng Biotechnol. 2021 Mar 19;9:620128. doi: 10.3389/fbioe.2021.620128. eCollection 2021.
3
Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity.
Angiogenesis. 2020 Aug;23(3):315-324. doi: 10.1007/s10456-020-09708-y. Epub 2020 Jan 29.
6
The Force at the Tip--Modelling Tension and Proliferation in Sprouting Angiogenesis.
PLoS Comput Biol. 2015 Aug 6;11(8):e1004436. doi: 10.1371/journal.pcbi.1004436. eCollection 2015 Aug.
9
Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6712-7. doi: 10.1073/pnas.1221526110. Epub 2013 Apr 8.
10
Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
Angiogenesis. 2019 Feb;22(1):157-165. doi: 10.1007/s10456-018-9647-0. Epub 2018 Aug 31.

引用本文的文献

1
Minimally Invasive Syringe-Injectable Hydrogel with Angiogenic Factors for Ischemic Stroke Treatment.
Adv Healthc Mater. 2025 Mar;14(6):e2403119. doi: 10.1002/adhm.202403119. Epub 2024 Nov 9.
3
Cellular Energy Cycle Mediates an Advection-Like Forward Cell Flow to Support Collective Invasion.
Adv Sci (Weinh). 2024 Aug;11(32):e2400719. doi: 10.1002/advs.202400719. Epub 2024 Jun 21.
4
The role of extracellular matrix in angiogenesis: Beyond adhesion and structure.
Biomater Biosyst. 2024 Jul 8;15:100097. doi: 10.1016/j.bbiosy.2024.100097. eCollection 2024 Sep.
5
The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models.
ACS Biomater Sci Eng. 2024 Jun 10;10(6):3548-3567. doi: 10.1021/acsbiomaterials.3c01978. Epub 2024 May 7.
6
Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels.
Acta Biomater. 2024 Jan 15;174:116-126. doi: 10.1016/j.actbio.2023.12.018. Epub 2023 Dec 14.
8
Cortical spheroid on perfusable microvascular network in a microfluidic device.
PLoS One. 2023 Oct 19;18(10):e0288025. doi: 10.1371/journal.pone.0288025. eCollection 2023.
9
Extracellular matrix in cancer progression and therapy.
Med Rev (2021). 2022 Apr 26;2(2):125-139. doi: 10.1515/mr-2021-0028. eCollection 2022 Apr.
10
Impaired angiogenesis in ageing: the central role of the extracellular matrix.
J Transl Med. 2023 Jul 11;21(1):457. doi: 10.1186/s12967-023-04315-z.

本文引用的文献

1
Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics.
ACS Biomater Sci Eng. 2019 Jun 10;5(6):2965-2975. doi: 10.1021/acsbiomaterials.9b00141. Epub 2019 May 22.
2
Hydrogel Network Dynamics Regulate Vascular Morphogenesis.
Cell Stem Cell. 2020 Nov 5;27(5):798-812.e6. doi: 10.1016/j.stem.2020.08.005. Epub 2020 Sep 14.
4
Molecular Tension Sensors: Moving Beyond Force.
Curr Opin Biomed Eng. 2019 Dec;12:83-94. doi: 10.1016/j.cobme.2019.10.003. Epub 2019 Oct 19.
5
Effects of extracellular matrix viscoelasticity on cellular behaviour.
Nature. 2020 Aug;584(7822):535-546. doi: 10.1038/s41586-020-2612-2. Epub 2020 Aug 26.
6
Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion.
Nat Cell Biol. 2020 Sep;22(9):1103-1115. doi: 10.1038/s41556-020-0552-6. Epub 2020 Aug 24.
9
Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries.
Sci Adv. 2020 Jan 17;6(3):eaay7243. doi: 10.1126/sciadv.aay7243. eCollection 2020 Jan.
10
Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity.
Angiogenesis. 2020 Aug;23(3):315-324. doi: 10.1007/s10456-020-09708-y. Epub 2020 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验