Suppr超能文献

预测坦桑尼亚创伤性脑损伤预后的机器学习模型:将紧急护理延迟作为预测指标。

Machine learning models to predict traumatic brain injury outcomes in Tanzania: Using delays to emergency care as predictors.

作者信息

Zimmerman Armand, Elahi Cyrus, Hernandes Rocha Thiago Augusto, Sakita Francis, Mmbaga Blandina T, Staton Catherine A, Vissoci Joao Ricardo Nickenig

机构信息

Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America.

Federal University of Minas Gerais, Belo Horizonte, Brazil.

出版信息

PLOS Glob Public Health. 2023 Oct 19;3(10):e0002156. doi: 10.1371/journal.pgph.0002156. eCollection 2023.

Abstract

Constraints to emergency department resources may prevent the timely provision of care following a patient's arrival to the hospital. In-hospital delays may adversely affect health outcomes, particularly among trauma patients who require prompt management. Prognostic models can help optimize resource allocation thereby reducing in-hospital delays and improving trauma outcomes. The objective of this study was to investigate the predictive value of delays to emergency care in machine learning based traumatic brain injury (TBI) prognostic models. Our data source was a TBI registry from Kilimanjaro Christian Medical Centre Emergency Department in Moshi, Tanzania. We created twelve unique variables representing delays to emergency care and included them in eight different machine learning based TBI prognostic models that predict in-hospital outcome. Model performance was compared using the area under the receiver operating characteristic curve (AUC). Inclusion of our twelve time to care variables improved predictability in each of our eight prognostic models. Our Bayesian generalized linear model produced the largest AUC, with a value of 89.5 (95% CI: 88.8, 90.3). Time to care variables were among the most important predictors of in-hospital outcome in our best three performing models. In low-resource settings where delays to care are highly prevalent and contribute to high mortality rates, incorporation of care delays into prediction models that support clinical decision making may benefit both emergency medicine physicians and trauma patients by improving prognostication performance.

摘要

急诊科资源的限制可能会妨碍患者入院后及时获得治疗。院内延误可能会对健康结果产生不利影响,尤其是对于需要及时处理的创伤患者。预后模型有助于优化资源分配,从而减少院内延误并改善创伤治疗结果。本研究的目的是调查在基于机器学习的创伤性脑损伤(TBI)预后模型中,急诊护理延误的预测价值。我们的数据来源是坦桑尼亚莫希的乞力马扎罗基督教医疗中心急诊科的TBI登记处。我们创建了12个代表急诊护理延误的独特变量,并将它们纳入8种不同的基于机器学习的TBI预后模型中,这些模型可预测院内结局。使用受试者工作特征曲线下面积(AUC)比较模型性能。纳入我们的12个护理时间变量提高了我们8个预后模型中每个模型的可预测性。我们的贝叶斯广义线性模型产生了最大的AUC,值为89.5(95%CI:88.8,90.3)。在我们表现最佳的三个模型中,护理时间变量是院内结局最重要的预测因素之一。在资源匮乏的环境中,护理延误非常普遍且导致高死亡率,将护理延误纳入支持临床决策的预测模型中,可能会通过改善预后性能使急诊医学医生和创伤患者都受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d61/10586611/ebf74b84bb7b/pgph.0002156.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验