Suppr超能文献

使用机器学习模型预测围产期死亡:坦桑尼亚北部一项基于出生登记的队列研究

Prediction of perinatal death using machine learning models: a birth registry-based cohort study in northern Tanzania.

作者信息

Mboya Innocent B, Mahande Michael J, Mohammed Mohanad, Obure Joseph, Mwambi Henry G

机构信息

School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa

Department of Epidemiology and Biostatistics, Institute of Public Health, Kilimanjaro Christian Medical University College, Moshi, Tanzania.

出版信息

BMJ Open. 2020 Oct 19;10(10):e040132. doi: 10.1136/bmjopen-2020-040132.

Abstract

OBJECTIVE

We aimed to determine the key predictors of perinatal deaths using machine learning models compared with the logistic regression model.

DESIGN

A secondary data analysis using the Kilimanjaro Christian Medical Centre (KCMC) Medical Birth Registry cohort from 2000 to 2015. We assessed the discriminative ability of models using the area under the receiver operating characteristics curve (AUC) and the net benefit using decision curve analysis.

SETTING

The KCMC is a zonal referral hospital located in Moshi Municipality, Kilimanjaro region, Northern Tanzania. The Medical Birth Registry is within the hospital grounds at the Reproductive and Child Health Centre.

PARTICIPANTS

Singleton deliveries (n=42 319) with complete records from 2000 to 2015.

PRIMARY OUTCOME MEASURES

Perinatal death (composite of stillbirths and early neonatal deaths). These outcomes were only captured before mothers were discharged from the hospital.

RESULTS

The proportion of perinatal deaths was 3.7%. There were no statistically significant differences in the predictive performance of four machine learning models except for bagging, which had a significantly lower performance (AUC 0.76, 95% CI 0.74 to 0.79, p=0.006) compared with the logistic regression model (AUC 0.78, 95% CI 0.76 to 0.81). However, in the decision curve analysis, the machine learning models had a higher net benefit (ie, the correct classification of perinatal deaths considering a trade-off between false-negatives and false-positives)-over the logistic regression model across a range of threshold probability values.

CONCLUSIONS

In this cohort, there was no significant difference in the prediction of perinatal deaths between machine learning and logistic regression models, except for bagging. The machine learning models had a higher net benefit, as its predictive ability of perinatal death was considerably superior over the logistic regression model. The machine learning models, as demonstrated by our study, can be used to improve the prediction of perinatal deaths and triage for women at risk.

摘要

目的

我们旨在通过机器学习模型确定围产期死亡的关键预测因素,并与逻辑回归模型进行比较。

设计

对2000年至2015年乞力马扎罗基督教医疗中心(KCMC)医疗出生登记队列进行二次数据分析。我们使用受试者工作特征曲线下面积(AUC)评估模型的判别能力,并使用决策曲线分析评估净效益。

地点

KCMC是位于坦桑尼亚北部乞力马扎罗地区莫希市的一家区域转诊医院。医疗出生登记处在医院内的生殖与儿童健康中心。

参与者

2000年至2015年有完整记录的单胎分娩(n = 42319例)。

主要观察指标

围产期死亡(死产和早期新生儿死亡的综合情况)。这些结局仅在母亲出院前记录。

结果

围产期死亡比例为3.7%。除了装袋法外,四种机器学习模型的预测性能没有统计学上的显著差异,与逻辑回归模型(AUC 0.78,95%CI 0.76至0.81)相比,装袋法的性能显著较低(AUC 0.76,95%CI 0.74至0.79,p = 0.006)。然而,在决策曲线分析中,在一系列阈值概率值范围内,机器学习模型的净效益高于逻辑回归模型(即,在考虑假阴性和假阳性之间权衡的情况下对围产期死亡进行正确分类)。

结论

在该队列中,除装袋法外,机器学习模型和逻辑回归模型在围产期死亡预测方面没有显著差异。机器学习模型的净效益更高,因为其对围产期死亡的预测能力明显优于逻辑回归模型。正如我们的研究所表明的,机器学习模型可用于改善围产期死亡的预测和对高危女性的分诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a1/7574940/038b15de903d/bmjopen-2020-040132f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验