Hernandes Rocha Thiago Augusto, Elahi Cyrus, Cristina da Silva Núbia, Sakita Francis M, Fuller Anthony, Mmbaga Blandina T, Green Eric P, Haglund Michael M, Staton Catherine A, Nickenig Vissoci Joao Ricardo
1Duke Division of Global Neurosurgery and Neurology.
2Duke University Global Health Institute, Durham, North Carolina.
J Neurosurg. 2019 May 10;132(6):1961-1969. doi: 10.3171/2019.2.JNS182098. Print 2020 Jun 1.
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with a disproportionate burden of this injury on low- and middle-income countries (LMICs). Limited access to diagnostic technologies and highly skilled providers combined with high patient volumes contributes to poor outcomes in LMICs. Prognostic modeling as a clinical decision support tool, in theory, could optimize the use of existing resources and support timely treatment decisions in LMICs. The objective of this study was to develop a machine learning-based prognostic model using data from Kilimanjaro Christian Medical Centre in Moshi, Tanzania.
This study is a secondary analysis of a TBI data registry including 3138 patients. The authors tested nine different machine learning techniques to identify the prognostic model with the greatest area under the receiver operating characteristic curve (AUC). Input data included demographics, vital signs, injury type, and treatment received. The outcome variable was the discharge score on the Glasgow Outcome Scale-Extended.
The AUC for the prognostic models varied from 66.2% (k-nearest neighbors) to 86.5% (Bayesian generalized linear model). An increasing Glasgow Coma Scale score, increasing pulse oximetry values, and undergoing TBI surgery were predictive of a good recovery, while injuries suffered from a motor vehicle crash and increasing age were predictive of a poor recovery.
The authors developed a TBI prognostic model with a substantial level of accuracy in a low-resource setting. Further research is needed to externally validate the model and test the algorithm as a clinical decision support tool.
创伤性脑损伤(TBI)是全球死亡和残疾的主要原因,低收入和中等收入国家(LMICs)承受着不成比例的该类损伤负担。在LMICs,诊断技术获取受限、缺乏高技能医疗服务提供者以及患者数量众多共同导致了不良预后。预后模型作为一种临床决策支持工具,理论上可以优化现有资源的利用,并支持LMICs及时做出治疗决策。本研究的目的是利用坦桑尼亚莫希的乞力马扎罗基督教医疗中心的数据开发一种基于机器学习的预后模型。
本研究是对一个包含3138例患者的TBI数据登记库进行的二次分析。作者测试了九种不同的机器学习技术,以确定在接受者操作特征曲线(AUC)下面积最大的预后模型。输入数据包括人口统计学信息、生命体征、损伤类型和接受的治疗。结果变量是格拉斯哥扩展预后量表的出院评分。
预后模型的AUC从66.2%(k近邻法)到86.5%(贝叶斯广义线性模型)不等。格拉斯哥昏迷量表评分增加、脉搏血氧饱和度值增加以及接受TBI手术预示着恢复良好,而机动车碰撞受伤和年龄增加预示着恢复不良。
作者在资源匮乏的环境中开发了一种具有较高准确性的TBI预后模型。需要进一步研究以对该模型进行外部验证,并将该算法作为临床决策支持工具进行测试。