Suppr超能文献

Delta 放射组学模型用于术前评估高级别骨肉瘤新辅助化疗反应。

A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma.

机构信息

Musculoskeletal Tumor Center, Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Hangzhou, China.

Institute of Orthopaedics Research, No.88 Jiefang Road, Hangzhou City, Zhejiang Province, 310009, China.

出版信息

Cancer Imaging. 2020 Jan 14;20(1):7. doi: 10.1186/s40644-019-0283-8.

Abstract

BACKGROUND

The difficulty of assessment of neoadjuvant chemotherapeutic response preoperatively may hinder personalized-medicine strategies that depend on the results from pathological examination.

METHODS

A total of 191 patients with high-grade osteosarcoma (HOS) were enrolled retrospectively from November 2013 to November 2017 and received neoadjuvant chemotherapy (NCT). A cutoff time of November 2016 was used to divide the training set and validation set. All patients underwent diagnostic CTs before and after chemotherapy. By quantifying the tumor regions on the CT images before and after NCT, 540 delta-radiomic features were calculated. The interclass correlation coefficients for segmentations of inter/intra-observers and feature pair-wise correlation coefficients (Pearson) were used for robust feature selection. A delta-radiomics signature was constructed using the lasso algorithm based on the training set. Radiomics signatures built from single-phase CT were constructed for comparison purpose. A radiomics nomogram was then developed from the multivariate logistic regression model by combining independent clinical factors and the delta-radiomics signature. The prediction performance was assessed using area under the ROC curve (AUC), calibration curves and decision curve analysis (DCA).

RESULTS

The delta-radiomics signature showed higher AUC than single-CT based radiomics signatures in both training and validation cohorts. The delta-radiomics signature, consisting of 8 selected features, showed significant differences between the pathologic good response (pGR) (necrosis fraction ≥90%) group and the non-pGR (necrosis fraction < 90%) group (P < 0.0001, in both training and validation sets). The delta-radiomics nomogram, which consisted of the delta-radiomics signature and new pulmonary metastasis during chemotherapy showed good calibration and great discrimination capacity with AUC 0.871 (95% CI, 0.804 to 0.923) in the training cohort, and 0.843 (95% CI, 0.718 to 0.927) in the validation cohort. The DCA confirmed the clinical utility of the radiomics model.

CONCLUSION

The delta-radiomics nomogram incorporating the radiomics signature and clinical factors in this study could be used for individualized pathologic response evaluation after chemotherapy preoperatively and help tailor appropriate chemotherapy and further treatment plans.

摘要

背景

术前评估新辅助化疗反应的难度可能会阻碍依赖于病理检查结果的个体化医学策略。

方法

回顾性纳入 2013 年 11 月至 2017 年 11 月期间接受新辅助化疗(NCT)的 191 例高级别骨肉瘤(HOS)患者。采用 2016 年 11 月的时间作为截断值,将患者分为训练集和验证集。所有患者在化疗前后均行诊断性 CT 检查。通过对 NCT 前后 CT 图像上的肿瘤区域进行量化,共计算出 540 个差值放射组学特征。采用组内/组间分割的组内相关系数和特征间的皮尔逊相关系数(Pearson)进行稳健的特征选择。基于训练集,采用套索算法构建差值放射组学特征签名。构建单期 CT 放射组学特征签名用于比较目的。然后通过结合独立的临床因素和差值放射组学特征签名,从多变量逻辑回归模型中构建放射组学列线图。通过接受者操作特征曲线(ROC)下面积(AUC)、校准曲线和决策曲线分析(DCA)评估预测性能。

结果

在训练集和验证集中,与单期 CT 基于的放射组学特征签名相比,差值放射组学特征签名的 AUC 更高。由 8 个选定特征组成的差值放射组学特征签名在病理完全缓解(pGR)(坏死分数≥90%)组和非 pGR(坏死分数<90%)组之间差异有统计学意义(均 P<0.0001,在训练集和验证集中)。由差值放射组学特征签名和化疗期间新发生的肺转移组成的差值放射组学列线图具有良好的校准度和区分度,训练集 AUC 为 0.871(95%可信区间:0.804 至 0.923),验证集 AUC 为 0.843(95%可信区间:0.718 至 0.927)。DCA 证实了该放射组学模型的临床实用性。

结论

本研究中纳入放射组学特征和临床因素的差值放射组学列线图可用于术前化疗后个体化病理反应评估,并有助于制定合适的化疗和进一步治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d1/6958668/7cc391a48aaf/40644_2019_283_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验