Department of Psychological & Brain Sciences, University of Louisville, Louisville, KY, USA.
Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA.
Psychol Med. 2024 Apr;54(6):1084-1090. doi: 10.1017/S003329172300288X. Epub 2023 Oct 20.
Eating disorders (ED) are serious psychiatric disorders, taking a life every 52 minutes, with high relapse. There are currently no support or effective intervention therapeutics for individuals with an ED in their everyday life. The aim of this study is to build idiographic machine learning (ML) models to evaluate the performance of physiological recordings to detect individual ED behaviors in naturalistic settings.
From an ongoing study (Final = 120), we piloted the ability for ML to detect an individual's ED behavioral episodes (e.g. purging) from physiological data in six individuals diagnosed with an ED, all of whom endorsed purging. Participants wore an ambulatory monitor for 30 days and tapped a button to denote ED behavioral episodes. We built idiographic ( = 1) logistic regression classifiers (LRC) ML trained models to identify onset of episodes (600 windows) v. baseline (571 windows) physiology (Heart Rate, Electrodermal Activity, and Temperature).
Using physiological data, ML LRC accurately classified on average 91% of cases, with 92% specificity and 90% sensitivity.
This evidence suggests the ability to build idiographic ML models that detect ED behaviors from physiological indices within everyday life with a high level of accuracy. The novel use of ML with wearable sensors to detect physiological patterns of ED behavior pre-onset can lead to just-in-time clinical interventions to disrupt problematic behaviors and promote ED recovery.
饮食失调(ED)是一种严重的精神疾病,每 52 分钟就有一人因此丧生,且复发率很高。目前,在日常生活中,ED 患者并没有得到支持或有效的干预治疗。本研究旨在构建个体化机器学习(ML)模型,以评估生理记录在自然环境中检测个体 ED 行为的性能。
我们在一项正在进行的研究(最终样本量=120)中对 ML 检测个体 ED 行为(如催吐)的能力进行了试点研究,该研究纳入了 6 名确诊为 ED 的患者,他们均有催吐行为。参与者佩戴了 30 天的可移动监测器,并在出现 ED 行为时点击按钮进行标记。我们构建了个体化(=1)逻辑回归分类器(LRC)ML 训练模型,以识别发作期(600 个窗口)与基线期(571 个窗口)的生理数据(心率、皮肤电活动和体温)。
使用生理数据,ML LRC 平均准确分类 91%的案例,特异性为 92%,敏感性为 90%。
这一证据表明,我们有能力构建个体化 ML 模型,能够从日常生活中的生理指标中准确检测 ED 行为。使用可穿戴传感器和 ML 检测 ED 行为发作前的生理模式是一种新颖的方法,它可以实现及时的临床干预,以中断不良行为并促进 ED 康复。