Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
Eur Heart J. 2023 Feb 21;44(8):680-692. doi: 10.1093/eurheartj/ehac617.
This study aims to identify and visualize electrocardiogram (ECG) features using an explainable deep learning-based algorithm to predict cardiac resynchronization therapy (CRT) outcome. Its performance is compared with current guideline ECG criteria and QRSAREA.
A deep learning algorithm, trained on 1.1 million ECGs from 251 473 patients, was used to compress the median beat ECG, thereby summarizing most ECG features into only 21 explainable factors (FactorECG). Pre-implantation ECGs of 1306 CRT patients from three academic centres were converted into their respective FactorECG. FactorECG predicted the combined clinical endpoint of death, left ventricular assist device, or heart transplantation [c-statistic 0.69, 95% confidence interval (CI) 0.66-0.72], significantly outperforming QRSAREA and guideline ECG criteria [c-statistic 0.61 (95% CI 0.58-0.64) and 0.57 (95% CI 0.54-0.60), P < 0.001 for both]. The addition of 13 clinical variables was of limited added value for the FactorECG model when compared with QRSAREA (Δ c-statistic 0.03 vs. 0.10). FactorECG identified inferolateral T-wave inversion, smaller right precordial S- and T-wave amplitude, ventricular rate, and increased PR interval and P-wave duration to be important predictors for poor outcome. An online visualization tool was created to provide interactive visualizations (https://crt.ecgx.ai).
Requiring only a standard 12-lead ECG, FactorECG held superior discriminative ability for the prediction of clinical outcome when compared with guideline criteria and QRSAREA, without requiring additional clinical variables. End-to-end automated visualization of ECG features allows for an explainable algorithm, which may facilitate rapid uptake of this personalized decision-making tool in CRT.
本研究旨在使用可解释的深度学习算法识别和可视化心电图(ECG)特征,以预测心脏再同步治疗(CRT)的结果。并将其性能与当前指南 ECG 标准和 QRSAREA 进行比较。
使用基于深度学习的算法对来自 251473 名患者的 110 万份心电图进行训练,该算法可压缩中位数心电图,从而将大多数心电图特征总结为仅 21 个可解释的因素(FactorECG)。来自三个学术中心的 1306 名 CRT 患者的植入前心电图转换为各自的 FactorECG。FactorECG 预测了死亡、左心室辅助装置或心脏移植的联合临床终点[c 统计量 0.69,95%置信区间(CI)0.66-0.72],显著优于 QRSAREA 和指南 ECG 标准[c 统计量 0.61(95%CI 0.58-0.64)和 0.57(95%CI 0.54-0.60),P<0.001]。与 QRSAREA 相比,FactorECG 模型中添加 13 个临床变量的附加值有限(Δc 统计量 0.03 对 0.10)。FactorECG 确定下壁 T 波倒置、较小的前胸 S 波和 T 波振幅、心室率以及增加的 PR 间隔和 P 波持续时间是预后不良的重要预测因素。创建了一个在线可视化工具,以提供交互式可视化(https://crt.ecgx.ai)。
FactorECG 仅需要标准的 12 导联心电图,与指南标准和 QRSAREA 相比,其预测临床结局的判别能力更高,而无需额外的临床变量。ECG 特征的端到端自动可视化可实现可解释的算法,这可能有助于快速采用这种个性化决策工具进行 CRT。