Suppr超能文献

开发一种明确的工具来预测肺癌患者的总生存期:一项基于非洲的队列研究。

Development of a well-defined tool to predict the overall survival in lung cancer patients: an African based cohort.

机构信息

Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco.

Faculty of Medicine and Pharmacy, Biosciences and Health Laboratory, Cadi Ayyad University, Marrakech, Morocco.

出版信息

BMC Cancer. 2023 Oct 20;23(1):1016. doi: 10.1186/s12885-023-11355-7.

Abstract

BACKGROUND

Nomogram is a graphic representation containing the expressed factor of the mathematical formula used to define a particular phenomenon. We aim to build and internally validate a nomogram to predict overall survival (OS) in patients diagnosed with lung cancer (LC).

METHODS

We included 1200 LC patients from a single institution registry diagnosed from 2013 to 2021. The independent prognostic factors of LC patients were identified via cox proportional hazard regression analysis. Based on the results of multivariate cox analysis, we constructed the nomogram to predict the OS of LC patients.

RESULTS

We finally included a total of 1104 LC patients. Age, medical urgency at diagnosis, performance status, radiotherapy, and surgery were identified as prognostic factors, and integrated to build the nomogram. The model performance in predicting prognosis was measured by receiver operating characteristic curve. Calibration plots of 6-, 12-, and 24- months OS showed optimal agreement between observations and model predictions.

CONCLUSION

We have developed and validated a unique predictive tool that can offer patients with LC an individual OS prognosis. This useful prognostic model could aid doctors in making decisions and planning therapeutic trials.

摘要

背景

列线图是一种图形表示,包含用于定义特定现象的数学公式的表达因素。我们旨在构建和内部验证一个列线图,以预测被诊断患有肺癌(LC)的患者的总生存期(OS)。

方法

我们纳入了 2013 年至 2021 年期间来自单一机构登记处的 1200 名 LC 患者。通过 cox 比例风险回归分析确定 LC 患者的独立预后因素。基于多变量 cox 分析的结果,我们构建了列线图来预测 LC 患者的 OS。

结果

我们最终纳入了总共 1104 名 LC 患者。年龄、诊断时的医疗紧急情况、表现状态、放疗和手术被确定为预后因素,并整合到列线图中。该模型在预测预后方面的性能通过接受者操作特征曲线进行测量。6、12 和 24 个月 OS 的校准图显示了观察值和模型预测之间的最佳一致性。

结论

我们已经开发并验证了一种独特的预测工具,可以为 LC 患者提供个体 OS 预后。这个有用的预后模型可以帮助医生做出决策和规划治疗试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e28/10589978/6471dda93faf/12885_2023_11355_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验