Suppr超能文献

基于肺部影像的机器学习模型的开发与验证,用于在胸部非增强计算机断层扫描上预测急性肺血栓栓塞症。

Development and validation of a lung graph-based machine learning model to predict acute pulmonary thromboembolism on chest noncontrast computed tomography.

作者信息

Deng Mei, Liu Anqi, Kang Han, Xi Linfeng, Yu Pengxin, Xu Wenqing, Yang Haoyu, Xie Wanmu, Liu Min, Zhang Rongguo

机构信息

Department of Radiology, China-Japan Friendship Hospital of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, China.

出版信息

Quant Imaging Med Surg. 2023 Oct 1;13(10):6710-6723. doi: 10.21037/qims-22-1059. Epub 2023 Sep 1.

Abstract

BACKGROUND

Computed tomography pulmonary angiography (CTPA) is a first-line noninvasive method to diagnose acute pulmonary thromboembolism (APE); however, whether chest noncontrast CT (NC-CT) could aid in the diagnosis of APE remains unknown. The aim of this study was to build and evaluate a holistic lung graph-based machine learning (HLG-ML) using NC-CT for the diagnosis of APE and to compare its performance with that of radiologists and the YEARS algorithm.

METHODS

This study enrolled 178 cases (77 males; age 63.9±16.7 years) who underwent NC-CT and CTPA in the same day from January 2019 to December 2020. Of these patients, 133 (75% of cases; 58 males; age 65.4±15.6 years) were placed into a training group and 45 (25% of cases; 19 males; age 59.6±19.2 years) into a testing group. The other 43 cases (18 males; age 62.8±20.0 years) were used to externally validate the model between January 2021 and March 2022. A HLG was developed with a pulmonary radiomics descriptor derived from NC-CT images. The approach extracted local radiomics features and encoded these local features into a radiomics descriptor as a characterization of global radiomics feature distribution. Subsequently, 8 ML models were trained and compared based on the radiomics descriptor. In the validation group, area under the curves (AUCs) of the HLG-ML model in the diagnosis of APE were compared with those of the 3 radiologists and the YEARS algorithm.

RESULTS

Among the 8 ML models, gradient boosting decision tree demonstrated the best classification performance (AUC =0.772) on the training set. In the testing set, the AUC of gradient boosting decision trees was 0.857 [95% confidence intervals (CIs): 0.699-0.951]. In the validation set, the performance of gradient boosting decision tree (AUC =0.810; 95% CI: 0.669-0.952; Youden index =0.621) outperformed 3 radiologists (AUC =0.508, 95% CI: 0.335-0.681, Youden index =0.016; AUC =0.504, 95% CI: 0.354-0.654, Youden index =0.008; AUC =0.527, 95% CI: 0.363-0.691, Youden index =0.050) and the YEARS algorithm (AUC =0.618; 95% CI: 0.469-0.767; Youden index =0.237).

CONCLUSIONS

Compared to all 3 radiologists and the YEARS algorithm, the proposed HLG-based gradient boosting decision tree model achieved a superior performance in the diagnosis of APE on the NC-CT and may thus serve as a valuable tool for physicians in the diagnosis of APE.

摘要

背景

计算机断层扫描肺动脉造影(CTPA)是诊断急性肺栓塞(APE)的一线非侵入性方法;然而,胸部非增强CT(NC-CT)是否有助于APE的诊断仍不清楚。本研究的目的是构建并评估一种基于整体肺图的机器学习(HLG-ML)方法,利用NC-CT诊断APE,并将其性能与放射科医生和YEARS算法的性能进行比较。

方法

本研究纳入了2019年1月至2020年12月期间同一天接受NC-CT和CTPA检查的178例患者(77例男性;年龄63.9±16.7岁)。其中,133例(75%;58例男性;年龄65.4±15.6岁)被纳入训练组,45例(25%;19例男性;年龄59.6±19.2岁)被纳入测试组。另外43例(18例男性;年龄62.8±20.0岁)在2021年1月至2022年3月期间用于外部验证该模型。利用从NC-CT图像中提取的肺影像组学描述符构建了一个HLG。该方法提取局部影像组学特征,并将这些局部特征编码为一个影像组学描述符,作为全局影像组学特征分布的表征。随后,基于该影像组学描述符训练并比较了8种机器学习模型。在验证组中,将HLG-ML模型诊断APE的曲线下面积(AUC)与3名放射科医生和YEARS算法的AUC进行比较。

结果

在8种机器学习模型中,梯度提升决策树在训练集上表现出最佳的分类性能(AUC =0.772)。在测试集中,梯度提升决策树的AUC为0.857[95%置信区间(CI):0.699-0.951]。在验证集中,梯度提升决策树的性能(AUC =0.810;95%CI:0.669-0.952;约登指数=0.621)优于3名放射科医生(AUC =0.508,95%CI:0.335-0.681,约登指数=0.016;AUC =0.504,95%CI:0.354-0.654,约登指数=0.008;AUC =0.527,95%CI:0.363-0.691,约登指数=0.050)和YEARS算法(AUC =0.618;95%CI:0.469-0.767;约登指数=0.237)。

结论

与3名放射科医生和YEARS算法相比,所提出的基于HLG的梯度提升决策树模型在利用NC-CT诊断APE方面表现出卓越的性能,因此可能成为医生诊断APE的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a33b/10585544/4f4e3ed38aac/qims-13-10-6710-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验