Suppr超能文献

基于地理空间的坦桑尼亚东南部基隆贝罗谷疟疾风险预测模型。

Geospatial based model for malaria risk prediction in Kilombero valley, South-eastern, Tanzania.

机构信息

Department of Geospatial Science and Technology, Ardhi University, Dar es Salaam, United Republic of Tanzania.

Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, United Republic of Tanzania.

出版信息

PLoS One. 2023 Oct 24;18(10):e0293201. doi: 10.1371/journal.pone.0293201. eCollection 2023.

Abstract

BACKGROUND

Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts.

METHODS

This study employs a geospatial based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability.

RESULTS

The study demonstrates that the majority of the study area falls under moderate risk level (61%), followed by the low risk level (31%), while the high malaria risk area covers a small area, which occupies only 8% of the total area.

CONCLUSION

The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions.

摘要

背景

疟疾在热带地区仍然构成重大公共卫生挑战。尽管坦桑尼亚在控制疟疾方面做出了巨大努力,但仍有残留的传播病例。不幸的是,人们对这些残留疟疾传播病例发生的地点以及它们如何传播知之甚少。例如,在坦桑尼亚,疟疾的传播呈异质分布。为了有效控制和预防疟疾的传播,了解疾病的空间分布和传播模式至关重要。本研究旨在预测疟疾传播风险较高的地区,以便制定干预措施,加速消除疟疾的努力。

方法

本研究采用基于地理空间的模型,预测和绘制基洛姆贝罗谷的疟疾风险区域。考虑了与疟疾传播相关的环境因素,并在层次分析法(AHP)中赋予了有价值的权重,AHP 是一种使用成对比较技术的在线系统。疟疾危害图是通过在地理信息系统(GIS)中叠加海拔、坡度、曲率、方位、降雨分布和溪流距离等因素生成的。最后,通过叠加疟疾风险的各个组成部分,包括危害、易受影响的因素和脆弱性,创建风险图。

结果

研究表明,研究区域的大部分属于中度风险水平(61%),其次是低风险水平(31%),而高疟疾风险区域仅占较小面积,仅占总面积的 8%。

结论

本研究的发现对于在残留传播环境中针对疟疾传播制定有针对性的空间干预措施至关重要。预测的疟疾风险区域提供了信息,为决策者和政策制定者提供了适当的规划、监测和干预措施部署的依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ddf/10597495/966961bde38c/pone.0293201.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验