Suppr超能文献

用于细胞响应的静态超微磁场与弹性微柱结构基底的耦合

Coupling of static ultramicromagnetic field with elastic micropillar-structured substrate for cell response.

作者信息

Quan Yue, Huang Ziyu, Wang Yuxin, Liu Yu, Ding Sen, Zhao Qian, Chen Xiuping, Li Haifeng, Tang Zikang, Zhou Bingpu, Zhou Yinning

机构信息

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau.

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.

出版信息

Mater Today Bio. 2023 Oct 14;23:100831. doi: 10.1016/j.mtbio.2023.100831. eCollection 2023 Dec.

Abstract

Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.

摘要

微柱已成为用于广泛生物应用的有前途的工具,而磁场对细胞行为调节的影响也越来越受到认可。然而,微柱和磁场对细胞行为的综合影响仍知之甚少。在本研究中,我们使用钕铁硼作为调谐磁性颗粒,研究了H9c2细胞对超微磁性微柱阵列的反应。我们对聚二甲基硅氧烷(PDMS)微柱和钕铁硼/聚二甲基硅氧烷微柱进行了比较分析,以评估它们对细胞功能的影响。我们的结果表明,H9c2细胞在超微磁性微柱上表现出显著增强的增殖和明显的细胞骨架重排,超过了纯PDMS微柱所观察到的效果。免疫染色进一步表明,与在PDMS微柱上培养的细胞相比,在超微磁性微柱上培养的细胞表现出更高的收缩性。值得注意的是,超微磁性微柱还显示出降低活性氧(ROS)水平的能力,从而防止F-肌动蛋白退化。因此,本研究引入了超微磁性微柱作为一种用于调节和检测细胞行为的新型工具,从而为组织工程、单细胞分析以及用于细胞水平研究的柔性传感器的开发的进一步研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e584/10594574/71d5cbb8a618/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验