Zhang Jianbo, Huang Yu-Ja, Trapecar Martin, Wright Charles, Schneider Kirsten, Kemmit John, Hernandez-Gordillo Victor, Yoon Jun Young, Alm Eric J, Breault David T, Trumper David, Griffith Linda G
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
Res Sq. 2023 Oct 12:rs.3.rs-3373576. doi: 10.21203/rs.3.rs-3373576/v1.
Crosstalk of microbes with human gut epithelia and immune cells is crucial for gut health. However, there is no existing system for a long-term co-culture of human innate immune cells with epithelium and oxygen-intolerant commensal microbes, hindering the understanding of microbe-immune interactions in a controlled manner. Here, we establish a gut epithelium-microbe-immune microphysiological system to maintain the long-term continuous co-culture of with colonic epithelium, antigen-presenting cells (APCs, herein dendritic cells and macrophages), with CD4 naïve T cells circulating underneath the colonic epithelium. Multiplex cytokine assays suggested that APCs contribute to the elevated level of cytokines and chemokines being secreted into both apical and basolateral compartments. In contrast, the absence of APCs does not allow reliable detection of these cytokines. In the presence of APCs, increased the transcription of pro-inflammatory genes such as toll-like receptor 1 (TLR1) and interferon alpha 1 (IFNA1) in the colonic epithelium, but no significant change on the secreted cytokines. In contrast, integration of CD4 naïve T cells reverses this effect by decreasing the transcription of TLR1, IFNA1, and indoleamine 2,3-dioxygenase, and increasing the -induced secretion of pro-inflammatory cytokines such as IL-8, MCP-1/CCL2, and IL1A. These results highlight the contribution of individual innate immune cells in the regulation of the immune response triggered by the gut commensal . The successful integration of defined populations of immune cells in this gut microphysiological system demonstrated the usefulness of the GuMI physiomimetic platform to study microbe-epithelial-immune interactions in health and disease.
微生物与人类肠道上皮细胞和免疫细胞之间的相互作用对肠道健康至关重要。然而,目前尚无将人类固有免疫细胞与上皮细胞以及耐氧共生微生物进行长期共培养的系统,这阻碍了以可控方式对微生物 - 免疫相互作用的理解。在此,我们建立了一个肠道上皮 - 微生物 - 免疫微生理系统,以维持结肠上皮细胞、抗原呈递细胞(APC,在此为树突状细胞和巨噬细胞)与在结肠上皮下方循环的CD4初始T细胞的长期连续共培养。多重细胞因子检测表明,APC有助于提高分泌到顶端和基底外侧隔室中的细胞因子和趋化因子水平。相比之下,缺乏APC则无法可靠检测到这些细胞因子。在有APC存在的情况下, 增加了结肠上皮中促炎基因如Toll样受体1(TLR1)和干扰素α1(IFNA1)的转录,但对分泌的细胞因子没有显著影响。相反,整合CD4初始T细胞通过降低TLR1、IFNA1和吲哚胺2,3 - 双加氧酶的转录,并增加 - 诱导的促炎细胞因子如IL - 8、MCP - 1/CCL2和IL1A的分泌来逆转这种效应。这些结果突出了单个固有免疫细胞在调节由肠道共生菌引发的免疫反应中的作用。在这个肠道微生理系统中成功整合特定群体的免疫细胞,证明了GuMI仿生平台在研究健康和疾病状态下微生物 - 上皮 - 免疫相互作用方面的实用性。