Pyo Juyeong, Jang Junwon, Ju Dongyeol, Lee Subaek, Shim Wonbo, Kim Sungjun
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Materials (Basel). 2023 Oct 15;16(20):6698. doi: 10.3390/ma16206698.
The von Neumann architecture has faced challenges requiring high-fulfillment levels due to the performance gap between its processor and memory. Among the numerous resistive-switching random-access memories, the properties of hexagonal boron nitride (BN) have been extensively reported, but those of amorphous BN have been insufficiently explored for memory applications. Herein, we fabricated a Pt/BN/TiN device utilizing the resistive switching mechanism to achieve synaptic characteristics in a neuromorphic system. The switching mechanism is investigated based on the I-V curves. Utilizing these characteristics, we optimize the potentiation and depression to mimic the biological synapse. In artificial neural networks, high-recognition rates are achieved using linear conductance updates in a memristor device. The short-term memory characteristics are investigated in depression by controlling the conductance level and time interval.
由于冯·诺依曼架构的处理器与内存之间存在性能差距,它面临着需要高实现水平的挑战。在众多电阻式开关随机存取存储器中,六方氮化硼(BN)的特性已被广泛报道,但非晶态BN在存储器应用方面的研究还不够充分。在此,我们利用电阻式开关机制制造了一种Pt/BN/TiN器件,以在神经形态系统中实现突触特性。基于电流-电压曲线研究了开关机制。利用这些特性,我们优化了增强和抑制过程以模拟生物突触。在人工神经网络中,通过在忆阻器器件中进行线性电导更新可实现高识别率。通过控制电导水平和时间间隔,研究了抑制过程中的短期记忆特性。