National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India.
Viruses. 2023 Oct 6;15(10):2056. doi: 10.3390/v15102056.
Human coronaviruses like MERS CoV are known to utilize dipeptidyl peptidase 4 (DPP4), apart from angiotensin-converting enzyme 2(ACE2) as a potential co-receptor for viral cell entry. DPP4, the ubiquitous membrane-bound aminopeptidase, is closely associated with elevation of disease severity in comorbidities. In SARS-CoV-2, there is inadequate evidence for combination of spike protein variants with DPP4, and underlying adversity in COVID-19. To elucidate this mechanistic basis, we have investigated interaction of spike protein variants with DPP4 through molecular docking and simulation studies. The possible binding interactions between the receptor binding domain (RBD) of different spike variants of SARS-CoV-2 and DPP4 have been compared with interactions observed in the experimentally determined structure of the complex of MERS-CoV with DPP4. Comparative binding affinity confers that Delta-CoV-2: DPP4 shows close proximity with MERS-CoV:DPP4, as depicted from accessible surface area, radius of gyration and number of hydrogen bonding in the interface. Mutations in the delta variant, L452R and T478K directly participate in DPP4 interaction, enhancing DPP4 binding. E484K in alpha and gamma variants of spike protein is also found to interact with DPP4. Hence, DPP4 interaction with spike protein becomes more suitable due to mutation, especially due to L452R, T478K and E484K. Furthermore, perturbation in the nearby residues Y495, Q474 and Y489 is evident due to L452R, T478K and E484K, respectively. Virulent strains of spike protein are more susceptible to DPP4 interaction and are prone to be victimized in patients due to comorbidities. Our results will aid the rational optimization of DPP4 as a potential therapeutic target to manage COVID-19 disease severity.
人冠状病毒如中东呼吸综合征冠状病毒(MERS-CoV)已知利用二肽基肽酶 4(DPP4),除血管紧张素转换酶 2(ACE2)以外,作为病毒细胞进入的潜在辅助受体。DPP4 是一种广泛存在的膜结合氨肽酶,与合并症中疾病严重程度的升高密切相关。在严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)中,尚无关于 Spike 蛋白变体与 DPP4 结合以及 COVID-19 中潜在逆境的充分证据。为了阐明这种机制基础,我们通过分子对接和模拟研究研究了 Spike 蛋白变体与 DPP4 的相互作用。通过比较不同 SARS-CoV-2 Spike 变体的受体结合结构域(RBD)与 DPP4 之间的可能结合相互作用,与实验确定的 MERS-CoV 与 DPP4 复合物结构中观察到的相互作用进行比较。比较结合亲和力表明,Delta-CoV-2:DPP4 与 MERS-CoV:DPP4 非常接近,从可及表面积、回转半径和界面中氢键的数量可以看出。Delta 变体中的突变 L452R 和 T478K 直接参与 DPP4 相互作用,增强 DPP4 结合。Spike 蛋白的 Alpha 和 Gamma 变体中的 E484K 也被发现与 DPP4 相互作用。因此,由于突变,特别是由于 L452R、T478K 和 E484K,Spike 蛋白与 DPP4 的相互作用变得更加合适。此外,由于 L452R、T478K 和 E484K,分别导致附近残基 Y495、Q474 和 Y489 的明显扰动。Spike 蛋白的毒力株更容易与 DPP4 相互作用,并且由于合并症,更容易成为患者的受害者。我们的结果将有助于合理优化 DPP4 作为治疗 COVID-19 疾病严重程度的潜在治疗靶点。