Suppr超能文献

审视社交媒体上关于流感疫苗的公众信息:对2017年至2023年235,261条推特帖子进行无监督深度学习

Examining Public Messaging on Influenza Vaccine over Social Media: Unsupervised Deep Learning of 235,261 Twitter Posts from 2017 to 2023.

作者信息

Ng Qin Xiang, Ng Clara Xinyi, Ong Clarence, Lee Dawn Yi Xin, Liew Tau Ming

机构信息

Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore.

Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.

出版信息

Vaccines (Basel). 2023 Sep 24;11(10):1518. doi: 10.3390/vaccines11101518.

Abstract

Although influenza vaccines are safe and efficacious, vaccination rates have remained low globally. Today, with the advent of new media, many individuals turn to social media for personal health questions and information. However, misinformation may be rife, and health communications may be suboptimal. This study, therefore, aimed to investigate the public messaging related to influenza vaccines by organizations over Twitter, which may have a far-reaching influence. The theoretical framework of the COM-B (capacity, opportunity, and motivation component of behavior) model was used to interpret the findings to aid the design of messaging strategies. Employing search terms such as "flu jab", "flu vaccine", "influenza vaccine", and '" influenza jab", tweets posted in English and by organizations from 1 January 2017 to 1 March 2023 were extracted and analyzed. Using topic modeling, a total of 235,261 tweets by organizations over Twitter were grouped into four main topics: publicizing campaigns to encourage influenza vaccination, public education on the safety of influenza vaccine during pregnancy, public education on the appropriate age to receive influenza vaccine, and public education on the importance of influenza vaccine during pregnancy. Although there were no glaring pieces of misinformation or misconceptions, the current public messaging covered a rather limited scope. Further information could be provided about influenza and the benefits of vaccination (capability), promoting community, pharmacist-led influenza vaccination, and other avenues (opportunity), and providing greater incentivization and support for vaccination (motivation).

摘要

尽管流感疫苗安全有效,但全球疫苗接种率一直很低。如今,随着新媒体的出现,许多人会在社交媒体上询问个人健康问题并获取相关信息。然而,错误信息可能泛滥,健康传播效果可能也不尽如人意。因此,本研究旨在调查各组织在推特上发布的与流感疫苗相关的公众信息,这些信息可能会产生深远影响。本研究采用COM - B(行为的能力、机会和动机组成部分)模型的理论框架来解读研究结果,以辅助制定信息传播策略。通过使用“流感疫苗接种”“流感疫苗”“流行性感冒疫苗”和“流感预防针”等搜索词,提取并分析了2017年1月1日至2023年3月1日期间各组织发布的英文推文。通过主题建模,推特上各组织发布的总计235,261条推文被归为四个主要主题:宣传鼓励接种流感疫苗的活动、关于孕期流感疫苗安全性的公众教育、关于接种流感疫苗适宜年龄的公众教育以及关于孕期流感疫苗重要性的公众教育。尽管没有明显的错误信息或误解,但目前的公众信息涵盖范围相当有限。可以提供更多关于流感和疫苗接种益处的信息(能力),推广社区、药剂师主导的流感疫苗接种及其他途径(机会),并为疫苗接种提供更大的激励和支持(动机)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6266/10610639/52cc776e0f44/vaccines-11-01518-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验