Michigan State University, East Lansing, MI, United States.
School of Business, University of Northern British Columbia, Prince George, BC, Canada.
JMIR Public Health Surveill. 2021 Jun 24;7(6):e23105. doi: 10.2196/23105.
Despite numerous counteracting efforts, antivaccine content linked to delays and refusals to vaccinate has grown persistently on social media, while only a few provaccine campaigns have succeeded in engaging with or persuading the public to accept immunization. Many prior studies have associated the diversity of topics discussed by antivaccine advocates with the public's higher engagement with such content. Nonetheless, a comprehensive comparison of discursive topics in pro- and antivaccine content in the engagement-persuasion spectrum remains unexplored.
We aimed to compare discursive topics chosen by pro- and antivaccine advocates in their attempts to influence the public to accept or reject immunization in the engagement-persuasion spectrum. Our overall objective was pursued through three specific aims as follows: (1) we classified vaccine-related tweets into provaccine, antivaccine, and neutral categories; (2) we extracted and visualized discursive topics from these tweets to explain disparities in engagement between pro- and antivaccine content; and (3) we identified how those topics frame vaccines using Entman's four framing dimensions.
We adopted a multimethod approach to analyze discursive topics in the vaccine debate on public social media sites. Our approach combined (1) large-scale balanced data collection from a public social media site (ie, 39,962 tweets from Twitter); (2) the development of a supervised classification algorithm for categorizing tweets into provaccine, antivaccine, and neutral groups; (3) the application of an unsupervised clustering algorithm for identifying prominent topics discussed on both sides; and (4) a multistep qualitative content analysis for identifying the prominent discursive topics and how vaccines are framed in these topics. In so doing, we alleviated methodological challenges that have hindered previous analyses of pro- and antivaccine discursive topics.
Our results indicated that antivaccine topics have greater intertopic distinctiveness (ie, the degree to which discursive topics are distinct from one another) than their provaccine counterparts (t=2.30, P=.02). In addition, while antivaccine advocates use all four message frames known to make narratives persuasive and influential, provaccine advocates have neglected having a clear problem statement.
Based on our results, we attribute higher engagement among antivaccine advocates to the distinctiveness of the topics they discuss, and we ascribe the influence of the vaccine debate on uptake rates to the comprehensiveness of the message frames. These results show the urgency of developing clear problem statements for provaccine content to counteract the negative impact of antivaccine content on uptake rates.
尽管采取了许多对抗措施,但与疫苗接种延误和拒绝接种相关的反疫苗内容在社交媒体上持续增长,而只有少数赞成疫苗接种的活动成功地吸引了公众或说服他们接受免疫接种。许多先前的研究将反疫苗接种者讨论的话题多样性与公众对此类内容的更高参与度联系起来。尽管如此,在参与-说服范围内,赞成疫苗接种和反疫苗接种内容的论述性主题的全面比较仍未得到探索。
我们旨在比较赞成疫苗接种和反疫苗接种的倡导者在试图影响公众接受或拒绝免疫接种时选择的论述性主题,以了解他们在参与-说服范围内的差异。我们的总体目标是通过以下三个具体目标来实现:(1)我们将与疫苗相关的推文分为赞成疫苗接种、反疫苗接种和中立三类;(2)我们从这些推文中提取和可视化论述性主题,以解释赞成疫苗接种和反疫苗接种内容之间的参与度差异;(3)我们确定了这些主题如何使用恩特曼的四个框架维度来构建疫苗。
我们采用多方法的方法来分析公共社交媒体网站上的疫苗辩论中的论述性主题。我们的方法结合了(1)从公共社交媒体网站(即,来自 Twitter 的 39962 条推文)进行大规模平衡数据收集;(2)开发用于将推文分类为赞成疫苗接种、反疫苗接种和中立组的监督分类算法;(3)应用无监督聚类算法识别双方讨论的突出主题;(4)采用多步骤定性内容分析确定突出的论述性主题以及疫苗在这些主题中的构建方式。这样做可以缓解阻碍先前对赞成疫苗接种和反疫苗接种论述性主题分析的方法学挑战。
我们的结果表明,反疫苗接种主题的主题间差异(即论述性主题之间的差异程度)大于其对应的赞成疫苗接种主题(t=2.30,P=.02)。此外,虽然反疫苗接种倡导者使用了所有四种众所周知的使叙述具有说服力和影响力的信息框架,但赞成疫苗接种的倡导者却忽略了清晰的问题陈述。
根据我们的结果,我们将反疫苗接种者的高参与度归因于他们讨论的主题的独特性,并且我们将疫苗辩论对接种率的影响归因于信息框架的全面性。这些结果表明,为赞成疫苗接种的内容制定明确的问题陈述以对抗反疫苗接种内容对接种率的负面影响迫在眉睫。