Suppr超能文献

基于聚合个体水平预测因子的群组随机试验中亚组分析的考虑因素。

Considerations for Subgroup Analyses in Cluster-Randomized Trials Based on Aggregated Individual-Level Predictors.

机构信息

Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.

出版信息

Prev Sci. 2024 Jul;25(Suppl 3):421-432. doi: 10.1007/s11121-023-01606-1. Epub 2023 Oct 28.

Abstract

In research assessing the effect of an intervention or exposure, a key secondary objective often involves assessing differential effects of this intervention or exposure in subgroups of interest; this is often referred to as assessing effect modification or heterogeneity of treatment effects (HTE). Observed HTE can have important implications for policy, including intervention strategies (e.g., will some patients benefit more from intervention than others?) and prioritizing resources (e.g., to reduce observed health disparities). Analysis of HTE is well understood in studies where the independent unit is an individual. In contrast, in studies where the independent unit is a cluster (e.g., a hospital or school) and a cluster-level outcome is used in the analysis, it is less well understood how to proceed if the HTE analysis of interest involves an individual-level characteristic (e.g., self-reported race) that must be aggregated at the cluster level. Through simulations, we show that only individual-level models have power to detect HTE by individual-level variables; if outcomes must be defined at the cluster level, then there is often low power to detect HTE by the corresponding aggregated variables. We illustrate the challenges inherent to this type of analysis in a study assessing the effect of an intervention on increasing COVID-19 booster vaccination rates at long-term care centers.

摘要

在评估干预或暴露效果的研究中,一个关键的次要目标通常涉及评估该干预或暴露在感兴趣的亚组中的差异效果;这通常被称为评估效应修饰或治疗效果的异质性(HTE)。观察到的 HTE 可能对政策具有重要意义,包括干预策略(例如,某些患者是否会比其他人从干预中获益更多?)和资源优先化(例如,减少观察到的健康差距)。在独立单位为个体的研究中,对 HTE 的分析理解得很好。相比之下,在独立单位为集群(例如,医院或学校)并且在分析中使用集群水平的结果的研究中,如果感兴趣的 HTE 分析涉及必须在集群水平上汇总的个体水平特征(例如,自我报告的种族),那么如何进行分析理解得就不太好。通过模拟,我们表明只有个体水平模型具有通过个体水平变量检测 HTE 的能力;如果结果必须在集群水平上定义,那么通过相应的聚合变量检测 HTE 的能力通常较低。我们在一项评估干预对长期护理中心 COVID-19 加强针接种率的影响的研究中说明了这种分析类型所固有的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ae/11239773/75ec7ee74f94/11121_2023_1606_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验