文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用神经网络预测脑卒患者的死亡率:一项纵向研究的结果分析。

Predicting mortality in brain stroke patients using neural networks: outcomes analysis in a longitudinal study.

机构信息

Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.

Werribie Mercy West Hospital, Werribee, VIC, 3030, Australia.

出版信息

Sci Rep. 2023 Oct 28;13(1):18530. doi: 10.1038/s41598-023-45877-8.


DOI:10.1038/s41598-023-45877-8
PMID:37898678
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10613278/
Abstract

In this study, Neural Networks (NN) modelling has emerged as a promising tool for predicting outcomes in patients with Brain Stroke (BS) by identifying key risk factors. In this longitudinal study, we enrolled 332 patients form Imam hospital in Ardabil, Iran, with mean age: 77.4 (SD 10.4) years, and 50.6% were male. Diagnosis of BS was confirmed using both computerized tomography scan and magnetic resonance imaging, and risk factor and outcome data were collected from the hospital's BS registry, and by telephone follow-up over a period of 10 years, respectively. Using a multilayer perceptron NN approach, we analysed the impact of various risk factors on time to mortality and mortality from BS. A total of 100 NN classification algorithm were trained utilizing STATISTICA 13 software, and the optimal model was selected for further analysis based on their diagnostic performance. We also calculated Kaplan-Meier survival probabilities and conducted Log-rank tests. The five selected NN models exhibited impressive accuracy ranges of 81-85%. However, the optimal model stood out for its superior diagnostic indices. Mortality rate in the training and the validation data set was 7.9 (95% CI 5.7-11.0) per 1000 and 8.2 (7.1-9.6) per 1000, respectively (P = 0.925). The optimal model highlighted significant risk factors for BS mortality, including smoking, lower education, advanced age, lack of physical activity, a history of diabetes, all carrying substantial importance weights. Our study provides compelling evidence that the NN approach is highly effective in predicting mortality in patients with BS based on key risk factors, and has the potential to significantly enhance the accuracy of prediction. Moreover, our findings could inform more effective prevention strategies for BS, ultimately leading to better patient outcomes.

摘要

在这项研究中,神经网络(NN)建模已成为一种有前途的工具,可以通过识别关键风险因素来预测脑卒(BS)患者的结局。在这项纵向研究中,我们招募了来自伊朗阿尔达比勒伊玛目医院的 332 名患者,平均年龄为 77.4(SD 10.4)岁,其中 50.6%为男性。BS 的诊断通过计算机断层扫描和磁共振成像确认,风险因素和结局数据分别从医院的 BS 登记处和 10 年的电话随访中收集。我们使用多层感知器 NN 方法分析了各种风险因素对死亡率和 BS 死亡率的时间的影响。总共使用 STATISTICA 13 软件训练了 100 个 NN 分类算法,并根据其诊断性能选择了最佳模型进行进一步分析。我们还计算了 Kaplan-Meier 生存概率并进行了 Log-rank 检验。五个选定的 NN 模型的准确率范围为 81-85%。然而,最优模型在诊断指标方面表现出色。训练数据和验证数据集的死亡率分别为 7.9(95%CI 5.7-11.0)/1000 和 8.2(7.1-9.6)/1000(P=0.925)。最优模型突出了 BS 死亡率的重要风险因素,包括吸烟、受教育程度低、年龄较大、缺乏体力活动、糖尿病史,这些因素都具有重要的权重。我们的研究提供了令人信服的证据,表明 NN 方法在基于关键风险因素预测 BS 死亡率方面非常有效,并且有可能显著提高预测的准确性。此外,我们的研究结果可以为 BS 的预防策略提供信息,最终改善患者的结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/0ae04fe6b086/41598_2023_45877_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/eb066478c5a4/41598_2023_45877_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/45503df2f521/41598_2023_45877_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/dff19cf367c7/41598_2023_45877_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/0ae04fe6b086/41598_2023_45877_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/eb066478c5a4/41598_2023_45877_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/45503df2f521/41598_2023_45877_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/dff19cf367c7/41598_2023_45877_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ba/10613278/0ae04fe6b086/41598_2023_45877_Fig4_HTML.jpg

相似文献

[1]
Predicting mortality in brain stroke patients using neural networks: outcomes analysis in a longitudinal study.

Sci Rep. 2023-10-28

[2]
The outcome in patients with brain stroke: A deep learning neural network modeling.

J Res Med Sci. 2020-8-24

[3]
Artificial neural networks versus proportional hazards Cox models to predict 45-year all-cause mortality in the Italian Rural Areas of the Seven Countries Study.

BMC Med Res Methodol. 2012-7-23

[4]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[5]
Modeling Survival in Patients With Brain Stroke in the Presence of Competing Risks.

J Prev Med Public Health. 2021-1

[6]
Treatment of individual predictors with neural network algorithms improves Global Registry of Acute Coronary Events score discrimination.

Arch Cardiol Mex. 2021

[7]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

[8]
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.

Artif Intell Med. 2019-7-25

[9]
A physically constrained Monte Carlo-Neural Network coupling algorithm for BNCT dose calculation.

Med Phys. 2024-6

[10]
Predicting real-time 3D deformation field maps (DFM) based on volumetric cine MRI (VC-MRI) and artificial neural networks for on-board 4D target tracking: a feasibility study.

Phys Med Biol. 2019-8-21

引用本文的文献

[1]
Neuroimaging Findings and Their Prognostic Value in Acute Ischaemic Stroke Patients at University of Maiduguri Teaching Hospital (UMTH), Borno State, Nigeria.

Niger Med J. 2025-6-16

[2]
Machine Learning Predictive Models for Survival in Patients with Brain Stroke.

Health Promot Perspect. 2025-5-6

[3]
Factors influencing survival outcomes in patients with stroke at three tertiary hospitals in Zimbabwe: A 12-month longitudinal study.

PLoS One. 2024-12-30

[4]
Predicting stroke severity of patients using interpretable machine learning algorithms.

Eur J Med Res. 2024-11-14

[5]
Classifying Residual Stroke Severity Using Robotics-Assisted Stroke Rehabilitation: Machine Learning Approach.

JMIR Biomed Eng. 2024-10-7

[6]
Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning.

Digit Health. 2024-9-17

[7]
Factors influencing survival outcomes in patients with stroke in Zimbabwe: A 12-month longitudinal study.

medRxiv. 2024-4-3

本文引用的文献

[1]
Analyzing and predicting the risk of death in stroke patients using machine learning.

Front Neurol. 2023-2-3

[2]
Stroke mortality prediction using machine learning: systematic review.

J Neurol Sci. 2023-1-15

[3]
National and subnational burden of stroke in Iran from 1990 to 2019.

Ann Clin Transl Neurol. 2022-5

[4]
Interpretability Analysis of One-Year Mortality Prediction for Stroke Patients Based on Deep Neural Network.

IEEE J Biomed Health Inform. 2022-4

[5]
Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019.

Lancet Neurol. 2021-10

[6]
Artificial neural network based prediction of postthrombolysis intracerebral hemorrhage and death.

Sci Rep. 2020-11-25

[7]
The outcome in patients with brain stroke: A deep learning neural network modeling.

J Res Med Sci. 2020-8-24

[8]
The moderating role of underlying predictors of survival in patients with brain stroke: a statistical modeling.

Sci Rep. 2020-9-28

[9]
The Use of Deep Learning to Predict Stroke Patient Mortality.

Int J Environ Res Public Health. 2019-5-28

[10]
Artificial intelligence in healthcare: past, present and future.

Stroke Vasc Neurol. 2017-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索