School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China.
Department of Hematology, Heze Hospital of Traditional Chinese Medicine, Heze 274000, P. R. China.
Int J Neural Syst. 2023 Nov;33(11):2350056. doi: 10.1142/S0129065723500569.
Seizure prediction can improve the quality of life for patients with drug-resistant epilepsy. With the rapid development of deep learning, lots of seizure prediction methods have been proposed. However, seizure prediction based on single convolution models is limited by the inherent defects of convolution itself. Convolution pays attention to the local features while underestimates the global features. The long-term dependence of the electroencephalogram (EEG) data cannot be captured. In view of these defects, a hybrid model called STCNN based on Swin transformer (ST) and 2D convolutional neural network (2DCNN) is proposed. Time-frequency features extracted by short-term Fourier transform (STFT) are taken as the input of STCNN. ST blocks are used in STCNN to capture the global information and long-term dependencies of EEGs. Meanwhile, the 2DCNN blocks are adopted to capture the local information and short-term dependent features. The combination of the two blocks can fully exploit the seizure-related information thus improve the prediction performance. Comprehensive experiments are performed on the CHB-MIT scalp EEG dataset. The average seizure prediction sensitivity, the area under the ROC curve (AUC) and the false positive rate (FPR) are 92.94%, 95.56% and 0.073, respectively.
癫痫发作预测可以提高耐药性癫痫患者的生活质量。随着深度学习的快速发展,已经提出了许多癫痫发作预测方法。然而,基于单一卷积模型的癫痫发作预测受到卷积本身固有缺陷的限制。卷积关注局部特征,而低估全局特征。脑电图 (EEG) 数据的长期依赖性无法被捕获。针对这些缺陷,提出了一种称为基于 Swin 变换 (ST) 和 2D 卷积神经网络 (2DCNN) 的混合模型 STCNN。短时傅里叶变换 (STFT) 提取的时频特征被用作 STCNN 的输入。STCNN 中使用 ST 块来捕获 EEG 的全局信息和长期依赖性。同时,采用 2DCNN 块来捕获局部信息和短期依赖特征。两个块的组合可以充分利用与癫痫发作相关的信息,从而提高预测性能。在 CHB-MIT 头皮 EEG 数据集上进行了综合实验。平均癫痫发作预测灵敏度、ROC 曲线下面积 (AUC) 和假阳性率 (FPR) 分别为 92.94%、95.56%和 0.073。