Suppr超能文献

基于多维变换和递归神经网络融合的癫痫发作预测。

Epileptic seizure prediction via multidimensional transformer and recurrent neural network fusion.

机构信息

School of Computer Science, Qufu Normal University, Rizhao, 276826, Shandong, China.

Rizhao-Qufu Normal University Joint Technology Transfer Center, Qufu Normal University, Rizhao, 276826, Shandong, China.

出版信息

J Transl Med. 2024 Oct 4;22(1):895. doi: 10.1186/s12967-024-05678-7.

Abstract

BACKGROUND

Epilepsy is a prevalent neurological disorder in which seizures cause recurrent episodes of unconsciousness or muscle convulsions, seriously affecting the patient's work, quality of life, and health and safety. Timely prediction of seizures is critical for patients to take appropriate therapeutic measures. Accurate prediction of seizures remains a challenge due to the complex and variable nature of EEG signals. The study proposes an epileptic seizure model based on a multidimensional Transformer with recurrent neural network(LSTM-GRU) fusion for seizure classification of EEG signals.

METHODOLOGY

Firstly, a short-time Fourier transform was employed in the extraction of time-frequency features from EEG signals. Second, the extracted time-frequency features are learned using the Multidimensional Transformer model. Then, LSTM and GRU are then used for further learning of the time and frequency characteristics of the EEG signals. Next, the output features of LSTM and GRU are spliced and categorized using the gating mechanism. Subsequently, seizure prediction is conducted.

RESULTS

The model was tested on two datasets: the Bonn EEG dataset and the CHB-MIT dataset. On the CHB-MIT dataset, the average sensitivity and average specificity of the model were 98.24% and 97.27%, respectively. On the Bonn dataset, the model obtained about 99% and about 98% accuracy on the binary classification task and the tertiary upper classification task, respectively.

CONCLUSION

The findings of the experimental investigation demonstrate that our model is capable of exploiting the temporal and frequency characteristics present within EEG signals.

摘要

背景

癫痫是一种常见的神经系统疾病,其发作会导致反复发作的意识丧失或肌肉抽搐,严重影响患者的工作、生活质量和健康安全。及时预测癫痫发作对于患者采取适当的治疗措施至关重要。由于 EEG 信号的复杂性和多变性,准确预测癫痫发作仍然是一个挑战。本研究提出了一种基于多维 Transformer 与递归神经网络(LSTM-GRU)融合的癫痫发作模型,用于 EEG 信号的癫痫发作分类。

方法

首先,在 EEG 信号中采用短时傅里叶变换提取时频特征。其次,使用多维 Transformer 模型学习提取的时频特征。然后,LSTM 和 GRU 用于进一步学习 EEG 信号的时间和频率特征。接下来,使用门控机制拼接和分类 LSTM 和 GRU 的输出特征。随后进行癫痫发作预测。

结果

该模型在两个数据集上进行了测试:Bonn EEG 数据集和 CHB-MIT 数据集。在 CHB-MIT 数据集上,该模型的平均灵敏度和平均特异性分别为 98.24%和 97.27%。在 Bonn 数据集上,该模型在二进制分类任务和三级上分类任务上的准确率分别约为 99%和约 98%。

结论

实验研究的结果表明,我们的模型能够利用 EEG 信号中的时间和频率特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7368/11451120/bfc6bc935683/12967_2024_5678_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验