School of Optoelectronic and Communication Engineering, Xiamen University of Technology, No. 600 Ligong Road, Jimei District, Xiamen, 361024, Fujian, China.
Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China.
Biomed Eng Online. 2023 Oct 31;22(1):103. doi: 10.1186/s12938-023-01169-w.
To classify early endometrial cancer (EC) on sagittal T2-weighted images (T2WI) by determining the depth of myometrial infiltration (MI) using a computer-aided diagnosis (CAD) method based on a multi-stage deep learning (DL) model. This study retrospectively investigated 154 patients with pathologically proven early EC at the institution between January 1, 2018, and December 31, 2020. Of these patients, 75 were in the International Federation of Gynecology and Obstetrics (FIGO) stage IA and 79 were in FIGO stage IB. An SSD-based detection model and an Attention U-net-based segmentation model were trained to select, crop, and segment magnetic resonance imaging (MRl) images. Then, an ellipse fitting algorithm was used to generate a uterine cavity line (UCL) to obtain MI depth for classification. In the independent test datasets, the uterus and tumor detection model achieves an average precision rate of 98.70% and 87.93%, respectively. Selecting the optimal MRI slices method yields an accuracy of 97.83%. The uterus and tumor segmentation model with mean IOU of 0.738 and 0.655, mean PA of 0.867 and 0.749, and mean DSC of 0.845 and 0.779, respectively. Finally, the CAD method based on the calculated MI depth reaches an accuracy of 86.9%, a sensitivity of 81.8%, and a specificity of 91.7% for early EC classification. In this study, the CAD method implements an end-to-end early EC classification and is found to be on par with radiologists in terms of performance. It is more intuitive and interpretable than previous DL-based CAD methods.
利用基于多阶段深度学习(DL)模型的计算机辅助诊断(CAD)方法,通过确定子宫肌层浸润(MI)的深度,对矢状面 T2 加权图像(T2WI)上的早期子宫内膜癌(EC)进行分类。本研究回顾性调查了 2018 年 1 月 1 日至 2020 年 12 月 31 日期间在该机构经病理证实的 154 例早期 EC 患者。其中 75 例为国际妇产科联合会(FIGO)IA 期,79 例为 FIGO IB 期。基于 SSD 的检测模型和基于 Attention U-net 的分割模型被用来选择、裁剪和分割磁共振成像(MRI)图像。然后,使用椭圆拟合算法生成子宫腔线(UCL),以获取 MI 深度进行分类。在独立测试数据集上,子宫和肿瘤检测模型的平均精度率分别为 98.70%和 87.93%。选择最佳 MRI 切片方法的准确率为 97.83%。子宫和肿瘤分割模型的平均 IOU 分别为 0.738 和 0.655,平均 PA 分别为 0.867 和 0.749,平均 DSC 分别为 0.845 和 0.779。最后,基于计算的 MI 深度的 CAD 方法对早期 EC 分类的准确率为 86.9%,灵敏度为 81.8%,特异性为 91.7%。在这项研究中,CAD 方法实现了早期 EC 的端到端分类,在性能上与放射科医生相当。它比以前基于 DL 的 CAD 方法更直观、更具可解释性。