Suppr超能文献

一种基于深度学习的框架,可从具有不同染色风格的细胞病理学图像预测子宫内膜癌。

A deep learning framework for predicting endometrial cancer from cytopathologic images with different staining styles.

机构信息

School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.

出版信息

PLoS One. 2024 Jul 31;19(7):e0306549. doi: 10.1371/journal.pone.0306549. eCollection 2024.

Abstract

Endometrial cancer screening is crucial for clinical treatment. Currently, cytopathologists analyze cytopathology images is considered a popular screening method, but manual diagnosis is time-consuming and laborious. Deep learning can provide objective guidance efficiency. But endometrial cytopathology images often come from different medical centers with different staining styles. It decreases the generalization ability of deep learning models in cytopathology images analysis, leading to poor performance. This study presents a robust automated screening framework for endometrial cancer that can be applied to cytopathology images with different staining styles, and provide an objective diagnostic reference for cytopathologists, thus contributing to clinical treatment. We collected and built the XJTU-EC dataset, the first cytopathology dataset that includes segmentation and classification labels. And we propose an efficient two-stage framework for adapting different staining style images, and screening endometrial cancer at the cellular level. Specifically, in the first stage, a novel CM-UNet is utilized to segment cell clumps, with a channel attention (CA) module and a multi-level semantic supervision (MSS) module. It can ignore staining variance and focus on extracting semantic information for segmentation. In the second stage, we propose a robust and effective classification algorithm based on contrastive learning, ECRNet. By momentum-based updating and adding labeled memory banks, it can reduce most of the false negative results. On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. Our method robustly predicts endometrial cancer on cytopathologic images with different staining styles, which will further advance research in endometrial cancer screening and provide early diagnosis for patients. The code will be available on GitHub.

摘要

子宫内膜癌筛查对于临床治疗至关重要。目前,细胞病理学家分析细胞病理学图像被认为是一种流行的筛查方法,但手动诊断既费时又费力。深度学习可以提供客观的指导效率。但是,子宫内膜细胞学图像通常来自具有不同染色风格的不同医疗中心。这降低了深度学习模型在细胞病理学图像分析中的泛化能力,导致性能不佳。本研究提出了一种针对子宫内膜癌的强大自动化筛查框架,该框架可应用于具有不同染色风格的细胞学图像,并为细胞病理学家提供客观的诊断参考,从而有助于临床治疗。我们收集并构建了 XJTU-EC 数据集,这是第一个包含分割和分类标签的细胞学数据集。我们提出了一种有效的两阶段框架,用于适应不同染色风格的图像,并在细胞水平上筛查子宫内膜癌。具体来说,在第一阶段,我们利用一种新颖的 CM-UNet 对细胞团块进行分割,该模型具有通道注意力(CA)模块和多层次语义监督(MSS)模块。它可以忽略染色变化,专注于提取语义信息进行分割。在第二阶段,我们提出了一种基于对比学习的稳健有效的分类算法 ECRNet。通过基于动量的更新和添加标记记忆库,可以减少大多数假阴性结果。在 XJTU-EC 数据集上,CM-UNet 实现了出色的分割性能,而 ECRNet 在测试集上的准确率为 98.50%,精度为 99.32%,灵敏度为 97.67%,优于其他竞争经典模型。我们的方法可以稳健地预测具有不同染色风格的细胞学图像中的子宫内膜癌,这将进一步推进子宫内膜癌筛查的研究,并为患者提供早期诊断。代码将在 GitHub 上提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2139/11290691/c5476e653ffe/pone.0306549.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验