Suppr超能文献

基于 MRI 的深度学习特征用于预测乳腺癌新辅助化疗后腋窝反应。

Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer.

机构信息

Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China (B.Z., Y.Y., H.W., Q.W.).

Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China (Y.M., M.L., Y.W., Z.L.).

出版信息

Acad Radiol. 2024 Mar;31(3):800-811. doi: 10.1016/j.acra.2023.10.004. Epub 2023 Oct 31.

Abstract

RATIONALE AND OBJECTIVES

To develop a MRI-based deep learning signature for predicting axillary response after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients.

MATERIALS AND METHODS

We enrolled 327 BC patients with axillary lymph node (ALN) metastases receiving axillary operations after NAC. The deep learning features were extracted by ResNet34, which was pretrained by a large, well-annotated dataset from ImageNet. Then we identified deep learning radiomics on magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI) in predicting axillary response after NAC in BC patients.

RESULTS

The extraction of 128 deep learning radiomics (DLR) features relied on the DCE-MRI for each patient. After the least absolute shrinkage and selection operator regression analysis, 13, 8, and 21 features remained from the pre-treatment, post-treatment, and combined DCE-MRI, respectively. The DLR signature established based on the combined DCE-MRI achieved good capacity in ALN response after NAC. The support vector machine achieved the best performance with an 0.99 area under the curve (AUC) of (95% confidence interval (CI), 0.98-1.00) and 0.83 (95% CI, 0.73-0.92) in the training and test sets, respectively. The LR model established with clinical parameters represented the best performance with 0.73 AUC (95% CI, 0.62-0.84), 0.73 sensitivity, 0.73 specificity, 0.63 PPV, and 0.81 NPV in the test set, respectively. Finally, the integration of radiomic signature and clinical signature resulted in establishing a predictive radiomic nomogram, with an AUC of 0.99 (95%CI, 0.99-1.00).

CONCLUSION

In conclusion, our current study constructed a predictive nomogram through the deep learning method, demonstrating favorable performance in the training and test cohort. The present prognostic model furnishes a precise and objective foundation for directing the surgical strategy toward ALN management in BC patients receiving NAC.

摘要

背景与目的

开发一种基于 MRI 的深度学习特征,以预测接受新辅助化疗(NAC)的乳腺癌(BC)患者腋窝反应。

材料与方法

我们纳入了 327 例接受 NAC 后行腋窝手术的腋窝淋巴结(ALN)转移的 BC 患者。深度学习特征由 ResNet34 提取,该模型由来自 ImageNet 的大型、标注良好的数据集预训练。然后,我们在 BC 患者的 NAC 后识别基于磁共振动态对比增强(DCE-MRI)的深度学习放射组学来预测腋窝反应。

结果

每个患者的 DCE-MRI 依赖于 128 个深度学习放射组学(DLR)特征的提取。经过最小绝对收缩和选择算子回归分析,分别从预处理、后处理和联合 DCE-MRI 中保留了 13、8 和 21 个特征。基于联合 DCE-MRI 建立的 DLR 特征在 NAC 后 ALN 反应方面具有良好的能力。支持向量机在训练集和测试集的 AUC 分别为 0.99(95%置信区间(CI),0.98-1.00)和 0.83(95% CI,0.73-0.92),表现出最佳性能。基于临床参数建立的 LR 模型在测试集中的 AUC 为 0.73(95% CI,0.62-0.84)、0.73 灵敏度、0.73 特异性、0.63 阳性预测值和 0.81 阴性预测值,表现出最佳性能。最后,放射组学特征和临床特征的整合建立了一个预测放射组学列线图,AUC 为 0.99(95%CI,0.99-1.00)。

结论

总之,我们的研究通过深度学习方法构建了一个预测列线图,在训练集和测试集中均表现出良好的性能。目前的预后模型为指导接受 NAC 的 BC 患者的 ALN 管理的手术策略提供了精确和客观的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验