Suppr超能文献

深度RNA扭转:基于注意力- inception网络的语言模型引导的RNA扭转角预测

DeepRNA-Twist: language-model-guided RNA torsion angle prediction with attention-inception network.

作者信息

Abir Abrar Rahman, Tahmid Md Toki, Rayan Rafiqul Islam, Rahman M Saifur

机构信息

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf199.

Abstract

RNA torsion and pseudo-torsion angles are critical in determining the three-dimensional conformation of RNA molecules, which in turn governs their biological functions. However, current methods are limited by RNA's structural complexity as well as flexibility, with experimental techniques being costly and computational approaches struggling to capture the intricate sequence dependencies needed for accurate predictions. To address these challenges, we introduce DeepRNA-Twist, a novel deep learning framework designed to predict RNA torsion and pseudo-torsion angles directly from sequence. DeepRNA-Twist utilizes RNA language model embeddings, which provides rich, context-aware feature representations of RNA sequences. Additionally, it introduces 2A3IDC module (Attention Augmented Inception Inside Inception with Dilated CNN), combining inception networks with dilated convolutions and multi-head attention mechanism. The dilated convolutions capture long-range dependencies in the sequence without requiring a large number of parameters, while the multi-head attention mechanism enhances the model's ability to focus on both local and global structural features simultaneously. DeepRNA-Twist was rigorously evaluated on benchmark datasets, including RNA-Puzzles, CASP-RNA, and SPOT-RNA-1D, and demonstrated significant improvements over existing methods, achieving state-of-the-art accuracy. Source code is available at https://github.com/abrarrahmanabir/DeepRNA-Twist.

摘要

RNA扭转角和伪扭转角对于确定RNA分子的三维构象至关重要,而RNA分子的三维构象又决定了它们的生物学功能。然而,目前的方法受到RNA结构复杂性和灵活性的限制,实验技术成本高昂,计算方法难以捕捉准确预测所需的复杂序列依赖性。为了应对这些挑战,我们引入了DeepRNA-Twist,这是一种新颖的深度学习框架,旨在直接从序列预测RNA扭转角和伪扭转角。DeepRNA-Twist利用RNA语言模型嵌入,它提供了丰富的、上下文感知的RNA序列特征表示。此外,它引入了2A3IDC模块(带扩张卷积的注意力增强 inception 内部 inception),将inception网络与扩张卷积和多头注意力机制相结合。扩张卷积无需大量参数就能捕捉序列中的长程依赖性,而多头注意力机制增强了模型同时关注局部和全局结构特征的能力。DeepRNA-Twist在包括RNA-Puzzles、CASP-RNA和SPOT-RNA-1D在内的基准数据集上进行了严格评估,并显示出相对于现有方法的显著改进,达到了当前的最佳准确性。源代码可在https://github.com/abrarrahmanabir/DeepRNA-Twist获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13a3/12047705/cafcdc87f2e4/bbaf199f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验